
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 12 — May 15, 2017

Lecturer: Nikhil R. Devanur

1 Bandit Linear Optimization

For this lecture, we assume we can pick points in S, rather than A. Given that in round t the
algorithm picks wt ∈ S, the feedback that we observe in roung t is precisely the loss of this vector,
`t ·wt.

1.1 Estimating gradients

Suppose we could observe the loss at two points in one round, say w′
t, and w′′

t . Then we could
estimate the loss as

˜̀
t(i) := `t · (w′

t −w′′
t),

if
w′
t −w′

t = e(i).

We also want w′
t and w′′

t to be close to wt. Further, suppose we would like that

w′
t + w′′

t

2
= wt.

One easy way of ensuring the above conditions is to choose

w′
t = wt + e(i)/2, w′′

t = wt − e(i)/2.

But we are not allowed two point estimates; we are only allowed one. The cool thing is, randomization
allows us to get the same effect with one point. Let

σt = ±1, with equal probability.

Suppose that the point we pick is
wt + σte(i).

It is easy to see that in expectation, this is the same as wt, i.e.,

Eσt [wt + σte(i)] = wt.

This is simply because Eσt [σt] = 0. For defining the estimate we subtracted the two vectors. This is
equivalent to the following.

˜̀
t(i) := [`t · (wt + σte(i))]σt.

This is a valid estimator, since the feedback that we recieve is [`t · (wt + σte(i))]. Now note that

Eσt [(wt + σte(i)) · σt] = e(i).

1

This is because, as before, Eσt [σt] = 0, and Eσt [σ2t] = 1. Therefore,

Eσt [˜̀t(i)] = `t(i).

We want to simultaneously estimate the loss of all the coordinates. For this, as we did before,

• we choose it from some probability distribution pt over [d].

• Pick σt = ±1 uniformly at random.

• Pick the vector wt + σte(it).

• Observe the feedback `t · (wt + σte(it)).

• Define for all i ∈ [d], ˜̀
t(i) := 1(it = i)[`t · (wt + σte(it))]σt/pt(i).

Note that we still have that for all i ∈ [d],

Eσt,it [˜̀t(i)] = `t(i).

One issue with this is that we need the vector that we pick, i.e., wt + σte(it), to be in S. For this,
we need one modification, which is to multiply the unit vectors by δ, for some small δ. In other
words, pick the vector

wt + δσte(it),

and estimate
˜̀
t(i) := 1(it = i)[`t · (wt + δσte(it))]σt/(p(i)δ).

We then restrict our initial search space to the following smaller set

Sδ = {u : u± δe(i) ∈ S, ∀i ∈ [d]}.

By this definition, if our initial wt is in the set Sδ, then we are guaranteed that the final vector
we pick is going to be in S. This introduces an additional error because we can now only compete
against the best u ∈ Sδ. This error is

min
u∈S
{`1..T · u} − min

u∈Sδ
{`1..T · u} . (1)

Suppose that the set S is such that

max
u∈S

min
v∈Sδ

{‖u− v‖1} ≤ O(δ). (2)

Then, given that the losses are such that ‖`t‖∞ ≤ 1 for all t ∈ [T], the error in (1) is bounded above
by

O(δT).

2

1.2 Combinatorial bandits

We now apply these ideas to combinatorial bandits, for the case that the set of actions is all subsets
of size r. The convex hull S is the set of all non-negative vectors u such that ‖u‖1 = r. We will use
the FTRL/Mirror descent with the entropic regularizer. Recall that the regret of this algorithm is
driven by the term

E[
d∑
i=1

wt(i) ˜̀
i
2
].

We will let pt be the uniform distribution. Further, recall that `t · u ≤ r for all u ∈ S. These imply
that

‖ ˜̀
t‖∞ ≤

rd

δ
.

Therefore,

E[

d∑
i=1

wt(i) ˜̀
i
2
] ≤

d∑
i=1

pt(i)wt(i)
r2d2

δ2

=
1

d

r2d2

δ2

d∑
i=1

wt(i)

=
r3d

δ2
.

Also, recall that for this regularizer, and any u ∈ S, the term R(u)−R(w1) ≤ r log(d/r). Finally,
for this set S, the condition in (2) holds. Putting this all together, the total regret of the algorithm,
for some choice of partameters η and δ, ignoring constant terms, is

r log(d/r)

η
+ η

r3d

δ2
T + δT.

To minimize this, we want to choose δ such that the last two terms are equal, i.e.,

δ3 = ηr3d.

The choice of η equalizes the first two terms, i.e.,

η2 =
log(d/r)δ2

r2dT

=
log(d/r)η2/3r2d2/3

r2dT

⇒ η4/3 =
log(d/r)

d1/3T

⇒ η =
log(d/r)3/4

d1/4T 3/4

⇒ δ =
rd1/4 log(d/r)1/4

T 1/4

⇒ δT = rd1/4 log(d/r)1/4T 3/4

3

This is not the optimal regret bound; the optimal bound gets a
√
T dependence. It uses an estimator

with a similar idea, but uses a spherical sampler. Note that the estimator we used (with pt being
the uniform distribution) can be written as

˜̀
t :=

d

δ
[`t · (wt + δσte(it))]σte(it).

An alternate estimator is
˜̀
t :=

d

δ
[`t · (wt + δvt)]vt,

where vt is a random vector from the unit sphere, i.e., ‖vt‖2 = 1. This can be further extended to
sample from an ellipsoid instead of a sphere.

Another difference is the usage of what are called self-concordant barrier functions as regularizers.
These functions were first defined in the design of interior point methods in optimization, a very
powerful technique. You will hear more about this in one of the guest lectures towards the end of
the quarter.

2 Contextual Bandits

This is a variant, where there is a distinction between actions and experts. Actions are what the
algorithm can pick, and suppose that there are d of them, which we identify with unit vectors in
Rd. Suppose that there are N experts, and in each round, each expert suggests her own probability
distribution over actions. This is intended to capture the “context”. The experts might have some
side information about what the losses might be in round t. They themselves might be doing their
own learning. The goal is to compete with the best fixed expert, not the best fixed action. Suppose
that the probability distribution chosen by expert j in round t is pjt ∈ ∆d. As earier, we will assume
that these are oblivious. Suppose algorithm picks it ∈ [d] in round t. The regret is then

regret =
T∑
t=1

`t(it)− min
j∈[N]

T∑
t=1

`t · pjt.

As before, algorithm only observes `t(it).

The algorithm we will consider will

• simulate FTRL with the entropic regularizer, on the set ∆N , with estimated losses.

• Let wt ∈ ∆N be the choice of the algorithm in round t in the simulation.

• Pick it = i with probability qt(i) =
∑N

j=1wt(j)pjt(i).

• Construct an estimate, for each i ∈ [d], ˜̀
t(i) = 1(it = i)`t(i)/qt(i)

• Define the estimated loss of expert j in round t as pjt · ˜̀
t.

4

As throughout, it is easy to see that E[˜̀t(i)] = `t(i). Once again the key term is

Eit [
N∑
j=1

wt(j)[pjt · ˜̀
t]
2] =

N∑
j=1

wt(j)Eit [(pjt · ˜̀
t)
2]

≤
N∑
j=1

wt(j)Eit [pjt · ˜̀
t
2
]

=
N∑
j=1

wt(j)
d∑
i=1

qt(i)pjt(i)`t(i)
2/qt(i)

2

=
d∑
i=1

`t(i)
2
N∑
j=1

wt(j)pjt(i)/qt(i)

=
d∑
i=1

`t(i)
2

≤ d.

As previously, we have that R(u)−R(w1) ≤ log(N). This gives a regret of

logN

η
+ ηdT.

As usual, by setting

η =

√
logN

dT
,

we get a regret of
O(

√
Td logN).

5

	Bandit Linear Optimization
	Estimating gradients
	Combinatorial bandits

	Contextual Bandits

