
CSE 522, Spring 2017
Homework 3
Due May 22

Problems:

1. Consider running online gradient descent with varying step sizes on loss functions that are β
strongly convex. Specifically, if wt is the point played in round t, then take

xt+1 := wt − ηt∇`t(wt)

and then let wt+1 be the point in S closest to xt+1 (in Euclidean distance). Using an analysis
along the lines of the analysis we originally did for online gradient descent, show that using
step sizes ηt = (βt)−1, it is possible to get the following T step regret bound

RegretT ≤
L2

2β
(1 + log T ),

where ||∇`t(wt)|| ≤ L for all t.

2. Consider the following “payment design” problem. A designer wishes to incentivize a fore-
caster to truthfully reveal his prediction p = (p1, . . . , pn) for which of n possible events will
occur (where each pi > 0 and

∑
i pi = 1). Here pi represents the forecaster’s belief about the

probability that event i will occur, under the assumption exactly one of the n events [1, n]
will occur. For example, if n = 2, event 1 might be the event that Trump is reelected in 2020
and event 2 the event that Trump is not reelected.

The designer’s payment scheme is defined by a set of n functions fi : ∆n → R+, for 1 ≤ i ≤ n
such that fi(p) is the payment the forecaster receives if his prediction is p and the final
outcome is i. In this definition, ∆n is the open probability simplex, that is

∆n = {(x1, . . . , xn)|
∑
i

xi = 1 and xi > 0 ∀i}.

Knowing the functions fi, the forecaster reports his prediction, say p. Later, once one of the
events actually happens, say outcome i, the forecaster receives a payment of fi(p).

For example, suppose n = 2, and for a forecaster report of (p, 1 − p) the payments will be
f1(p) = log p and f2(1−p) = log(1−p). If the forecaster believes the probabilities are (p, 1−p)
but reports (q, 1− q), then his best estimate of his expected payment will be

p log q + (1− p) log(1− q).

It is easy to check that this quantity is maximized when he reports truthfully.

A payment scheme is good if it incentivizes truthful reporting, that is, the forecaster’s expected
payment is maximized by reporting his true beliefs.

Prove the following:



Let fi(·), for 1 ≤ i ≤ n be a payment scheme. This payment scheme is good if and only if
there is a convex function g : ∆n → R such that for all q ∈ ∆n, there is a subgradient vq of
g at q satisfying

fi(q) = g(q) + (ei − q) · vq ∀i.

Here ei is the vector with a 1 in position i and 0 elsewhere.

3. In the notes we discuss the “agile” version of mirror descent. (see Remark 3.2 in the Lecture
10 notes). Show that the agile version is equivalent to the following algorithm:

w1 := argminw∈SR(w)

and
wt+1 := argminw∈S (BR(w||wt) + η∇`t(wt) ·w) .


