Problems:

1. Consider running online gradient descent with varying step sizes on loss functions that are β strongly convex. Specifically, if \mathbf{w}_t is the point played in round t, then take

$$\mathbf{x}_{t+1} := \mathbf{w}_t - \eta_t \nabla \ell_t(\mathbf{w}_t)$$

and then let \mathbf{w}_{t+1} be the point in S closest to \mathbf{x}_{t+1} (in Euclidean distance). Using an analysis along the lines of the analysis we originally did for online gradient descent, show that using step sizes $\eta_t = (\beta t)^{-1}$, it is possible to get the following T step regret bound

$$\operatorname{Regret}_T \le \frac{L^2}{2\beta} (1 + \log T)$$

where $||\nabla \ell_t(\mathbf{w}_t)|| \leq L$ for all t.

2. Consider the following "payment design" problem. A designer wishes to incentivize a forecaster to truthfully reveal his prediction $\mathbf{p} = (p_1, \ldots, p_n)$ for which of n possible events will occur (where each $p_i > 0$ and $\sum_i p_i = 1$). Here p_i represents the forecaster's belief about the probability that event i will occur, under the assumption exactly one of the n events [1, n]will occur. For example, if n = 2, event 1 might be the event that Trump is reelected in 2020 and event 2 the event that Trump is not reelected.

The designer's payment scheme is defined by a set of n functions $f_i : \Delta_n \to \mathbb{R}^+$, for $1 \le i \le n$ such that $f_i(\mathbf{p})$ is the payment the forecaster receives if his prediction is \mathbf{p} and the final outcome is i. In this definition, Δ_n is the open probability simplex, that is

$$\Delta_n = \{(x_1, \dots, x_n) | \sum_i x_i = 1 \text{ and } x_i > 0 \ \forall i \}$$

Knowing the functions f_i , the forecaster reports his prediction, say **p**. Later, once one of the events actually happens, say outcome *i*, the forecaster receives a payment of $f_i(\mathbf{p})$.

For example, suppose n = 2, and for a forecaster report of (p, 1 - p) the payments will be $f_1(p) = \log p$ and $f_2(1-p) = \log(1-p)$. If the forecaster believes the probabilities are (p, 1-p) but reports (q, 1-q), then his best estimate of his expected payment will be

$$p\log q + (1-p)\log(1-q).$$

It is easy to check that this quantity is maximized when he reports truthfully.

A payment scheme is *good* if it incentivizes truthful reporting, that is, the forecaster's expected payment is maximized by reporting his true beliefs.

Prove the following:

Let $f_i(\cdot)$, for $1 \leq i \leq n$ be a payment scheme. This payment scheme is good if and only if there is a convex function $g: \Delta_n \to \mathbb{R}$ such that for all $\mathbf{q} \in \Delta_n$, there is a subgradient $\mathbf{v}_{\mathbf{q}}$ of g at \mathbf{q} satisfying

$$f_i(\mathbf{q}) = g(\mathbf{q}) + (\mathbf{e}_i - \mathbf{q}) \cdot \mathbf{v}_{\mathbf{q}} \quad \forall i.$$

Here \mathbf{e}_i is the vector with a 1 in position i and 0 elsewhere.

3. In the notes we discuss the "agile" version of mirror descent. (see Remark 3.2 in the Lecture 10 notes). Show that the agile version is equivalent to the following algorithm:

$$\mathbf{w}_1 := \operatorname{argmin}_{\mathbf{w} \in S} R(\mathbf{w})$$

and

 $\mathbf{w}_{t+1} := \operatorname{argmin}_{\mathbf{w} \in S} \left(B_R(\mathbf{w} || \mathbf{w}_t) + \eta \nabla \ell_t(\mathbf{w}_t) \cdot \mathbf{w} \right).$