University of Washington Department of Computer Science and Engineering CSE 522, Spring 2014 May 3, 2014

Problem Set 1, Due Wednesday, April 30, 2014

Problem #1:

Generalize the lower bound argument for the complexity of property testing for element distinctness to show that any algorithm that always accepts distinct inputs, but with probability at least 1/2 rejects all inputs with $< (1 - \varepsilon)n$ distinct values requires $\Omega(\sqrt{n/\varepsilon})$ samples.

Problem #2:

Consider the following deterministic algorithm which, unlike the Misra-Gries algorithm, computes an over-estimate, rather than an under-estimate of the heavy hitter frequencies.

Space-Saving Algorithm

1: Initialize: $k \leftarrow \lceil 1/\varepsilon \rceil$ A is a set of up to k pairs (j, \tilde{f}_j) . 2: $A \leftarrow \emptyset$, 3: Process: 4: for each i do if $x_i \in A$ then 5: $f_{x_i} \leftarrow f_{x_i} + 1$ 6: else if |A| < k then 7: Add x_i to A8: $f_{x_i} \leftarrow 1$ 9: 10: else $j' \leftarrow \operatorname{argmin}_{i \in A} \tilde{f}_j$ 11: $\tilde{f}_{x_i} \leftarrow \tilde{f}_{j'} + \tilde{1}$ Replace $(j', \tilde{f}_{j'})$ in A with (x_i, \tilde{f}_{x_i}) 12:13:14: end if 15: end for 16: Output: $\tilde{f} \leftarrow A$ 17: $\overline{\tilde{f}_j}$ is as given for $j \in A$, $\tilde{f}_j = 0$ if $j \notin A$.

```
Show that:
```

(a) For every j ∈ A, f̃_j ≥ f_j.
(b) For every j ∈ [M], f̃_j ≤ f_j + f̃_{min} where f̃_{min} = {f_j : j ∈ A}.
(c) Σ_{j∈A} f̃_j = n

- (d) $\tilde{f}_{min} \leq \lfloor n/k \rfloor$ and hence $f_j \leq \tilde{f}_j \leq f_j + \lfloor n/k \rfloor$ for every $j \in A$.
- (e) For $i \leq k$, the *i*-th largest \tilde{f}_j value is an upper bound on the *i*-th largest f_j value (even though they might be for different values of j).

Problem #3:

This problem shows a tight relationship between the approximations of the Space-Saving algorithm above and the Misra-Gries algorithm when run using the same value of k:

Let A^{MG} be the set of size at most k-1 maintained during the execution of the Misra-Gries algorithm and \tilde{f}^{MG} be the frequency values maintained by that algorithm, where $\tilde{f}_j^{MG} = 0$ for $j \notin A^{MG}$.

Similarly, define A^{SS} , the set of size up to k maintained by the Space-Saving algorithm. Let \min^{SS} be the k-th largest frequency in A^{SS} where $\min^{SS} = 0$ if $|A^{SS}| < k$. Let \tilde{f}^{SS} be the vector of frequency estimates maintained by the Space-Saving algorithm during its execution, where we consider $\tilde{f}_{j}^{SS} = \min^{SS}$ if $j \notin A^{SS}$.

Finally, let sum^{MG} be $\sum_{j=1}^{M} \tilde{f}_{j}^{MG}$.

Prove by induction on n that after processing the same sequence of n inputs,

$$\min^{SS} = (n - \operatorname{sum}^{MG})/k$$

and for every $j \in [M]$,

$$\tilde{f}_j^{SS} = \tilde{f}_j^{MG} + \min^{SS}.$$

Problem #4:

Given two relations R and S with a common attribute, for query optimization it is useful to estimate the size of the join $R \bowtie S$ without actually executing it. If the frequency vectors for the attribute in the two relations are $f = (f_1, \ldots, f_M)$ and $g = (g_1, \ldots, g_M)$ then the number of tuples in that join is precisely $\sum_{j=1}^{M} f_j g_j = \langle f, g \rangle$. Design and analyze an algorithm based on the Tug-of-War Sketch for F_2 that maintains sketches for both f and g that provides a $1 \pm \varepsilon$ factor approximation of the join size with probability at least $1 - \delta$.

Hint: Replace the use of y^2 in the Tug-of-War Sketch with a product of two different values.