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1 Tolerant Testing

So far in property testing we have consider testers of the form, with probability at least 2/3, deter-
mine whether

e the input has property P, or

e the input is e-far from any input having property P.

This gives complete freedom to answer if the input is close to having property P but does not
exactly have this property. It is natural to think of property testing algorithms for which the input
queries might have a very small probability of error. In this case it would be good to be able to
separate inputs that are e-far from having property P from those that are £’-close to having property
P where ¢’ > 0. We call this a (¢/, £)-tolerant tester. Ideally, one would want such a tester to have
a running time that is a small inverse polynomial in € — &’.

Though it is not of this desired form, on the second problem set there is a fairly simple problem
to show that when the distance is fractional Hamming distance, any property testing algorithm
making ¢(n, ) queries is automatically an (¢/(3¢(n, €)), £)-tolerant property tester.

2 Sublinear Mutliplicative-Additive Approximation Algorithms

In lecture 15 we showed how to efficient approximate the MST size within a en additive term,
which yielded a (1 + ¢)-approximation because the MST size is at least n — 1. The en additive
term is essential for many sublinear algorithms for optimization problems because the algorithm
will always miss reading most of the input and that unread part could change the optimum by a
large amount. To handle these cases naturally, we need a more general definition of approximation.

Definition 2.1. An algorithm gives an (c, €)-approximation to the optimum value O PT of a mini-
mization problem iff the algorithm produces as output a value O PT such that

OPT < OPT < a-OPT +¢n.



As with the MST algorithm, we consider a query model in which an algorithm can query the
degree deg(v) of any vertex v, and can give the query (v,4) which gives the name of the i-th
outneighbor of the vertex v. When we described the MST algorithm we assumed that the graph
had a maximum degree d. Similar bounds hold even in terms of the average degree d but again we
assume a maximum degree d for simplicity here.

The problems we will consider are the vertex cover problem, the maxmimal (not maximum) match-
ing problem and the maximal independent set problem. These three problems are related in terms
of approximation: Any vertex cover must contain at least one vertex from each edge in any match-
ing. If we take all vertices touched by any maximal matching then we certainly obtain a ver-
tex cover of the graph, but it is also at most twice the minimum size required. Furthermore, it
is easy to see that a maximal matching is simply a maximal independent set in the line graph
L(G) = (V', E') of the original graph G = (V, E), where V' = E and E’ contains all pairs of
edges of G that share a vertex.

The general idea will be to derive an algorithm that will test for any vertex v, using a small number
of queries, whether or not v is touched by a fixed maximal matching and therefore included in
the vertex cover given by the 2-approximation above. The algorithm to estimate the size of the
vertex cover will randomly choose an independent sample of vertices and test each one using the
algorithm. The fraction of vertices in the sample that are in the cover is the estimate of its size
which is at most 2 - OPT by construction. By Chernoff bounds, since the sampling procedure
is a sum of independent coin flips, each of which has probability of heads 2 - OPT'/n if we take
s = O(1/&?) samples, it is within 4=en /2 of O PT with probability at least 2/3. We if add en/2 to
the value, then the resulting OPT will always be between 2 - OPT and 2 - OPT + en. It remains
to show how to determine whether a vertex v is touched by a fixed maxmal matching.

From greedy algorithms to sublinear algorithms We first recall the standard family of greedy
algorithms for maximal independent set (or maximal matching). We consider the vertices (edges,
for maximal matching) in some fixed order given by a permutation 7 on [n].

The algorithm is as follows: Suppose that the vertices are vy, . .., v,. Begin with [ = (). Fori = 1
to n, add vertex v.(; to I iff it is not a neighbor of any element of /. In the case of maximal
matching, the edges are ordered and we add each edge to the matching M that does not share
endpoints with any element of M.

The above algorithm is naturally very sequential. In the 1980’s Luby [] described both randomized
and deterministic parallel versions of this basic algorithm idea. We consider a simple randomized
version: Each vertex independently chooses a random real rank € [0, 1]. Since having two identical
rank values has probability 0, this implicitly defines a rank order on the vertices (and the same can
be done for edges in the case of maximal matching). A vertex (edge) will be included in the
maximal independent set (maximal match) if all its neighbors are larger rank or, more generally, if
all its neighbors of smaller rank are not in the independent set because of their other neighbors.



In the original parallel algorithm, the algorithm is actually run in log n rounds: in each round only
those vertices (edges) that are smaller than all their neighbors are retained; all their neighboring
vertices (edges) are deleted and the algorithm is run for another round. The algorithm in this case
is optimized for parallel execution but is not sublinear.

In the sublinear algorithm we consider, which we describe for the case of maximal matching,
was originally designed by Nguyen and Onak [] using the same idea of fixing a random ranking
at the start. However, we only produce the rank values on demand, storing the ones we have
produced, and we explicitly follow the chain of neighbors to determine the presence or absence
of a single edge in the maximum matching relative to the induced permutation 7. We describe
the algorithm involving two oracle functions VO™ which determines whether or not vertex v is
contained in any edge of the maximal matching corresponding to a random ranking 7. VO™ (v)
will call function M O (e) which will determine whether or not edge e is contained the maximal
matching corresponding to 7. (In both the O stands for “oracle”.

VO™ (v)
1: Leteq,...,eq be the edges touching vertex v in order of increasing rank under 7.
2: fori < 1toddo
3 if MO™(e;) = TRUE then
4: Return TRUE
5 end if
6: end for
7: Return FALSE

MO™(e)
1: Letey,..., e for k < 2(d— 1) be the edges touching edge e in order of increasing rank under
.
11
while 7(e;) < 7(e) do
if MO™(e;) = TRUF then
Return FALSE
else
1+—1+1
end if
end while
: Return TRUE
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Intuitively, the algorithm checks the neighbors of a vertex or edge starting with the smallest rank
neighbor since that is the hardest to eliminate because elimination only occurs if there are even
smaller numbered edges. The recursion in M O7(e) is tricky to analyze as is the fact that ranks
from previous parts of the execution may reappear in later parts. It is also obvious that in the worst
case the recursion can do on for an extended number of nodes. However, the randomness involved



in the algorithm will show that these chains are bounded independent of the number of nodes in
the graph.

Assume that we are at the start of the algorithm when no prior ranks have been found. Consider a
fixed path of edges of length ¢ beginning with a call to M O™ from VO™ (v) including a fixed edge
e touching v and assume that the rank of every edge has not been set when it is explored. Each
edge is touched by at most 2(d — 1) other edges since the graph has degree at most d. In order
for the algorithm to explore the edges along this path, each edge must have smaller rank than the
previous one. The probability that this happens for these edges is precisely 1/t!. There are at most
(2d — 2)~1 paths of length ¢ in this sequence of edges Observe also for a path of length ¢ need
be counted only once in order to describe its contribution because its subpath of length ¢ — 1 will
count all but its last edge. Therefore we have an expected cost of this call of at most

(2d —2)" jtl = le_ 5 D24 -2/ = (7~ 1)/(2d - 2).

t=1 t=1

Nguyen and Onak showed that a similar exponential upper bound in d but independent of 7, also
applies when the ranking has previously been explored to a small extent, yielding a 2°? /2 query
(2, e)-approximation algorithm for vertex cover. They were not able to take into account the full
ordering properties in which the vertices were considered, or the fact that the original vertex v was
randomly sampled. Yoshido, Yamamoto, and Ito later used these properties to show that it is an
O(d*/&?) query algorithm, though the proof is quite involved and too long to present here. Onak,
Ron, Rosen, and Rubinfeld then extended these ideas, along with more efficient data structures to
store and compare rankings and explore the neighborhoods around each vertex to show that the
above algorithm blueprint can actually be made to work in time O(d/e?).

3 Graph Semi-streaming Algorithms

We mention a final topic briefly because it was not chosen for the project presentations. Though
there are a few algorithmic problems on graphs where streaming algorithms using space sublinear
in the number of vertices are possible, they are the exception rather than the rule. In graph semi-
streaming algorithms, the goal is to obtain algorithms that always are better than ©(n?) space even
if the input graph is dense, and ideally to produce algorithms with space complexity n log®W n.
These algorithms are still worthwhile when dealing with very large possibly dense graphs when a
million vertices in a graph can easily be stored in main memory, but storing all the edges would
be prohibitive. This is quite an active area of current research. We give a very brief taste of some
results:

Spanners and All-Pairs Shortest Paths approximation The goal is given G to produce a
(small) subgraph H of unweighted graph G that allows us to estimate (the lengths of) all pairs
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shortest paths in G. H is a k-spanner of G iff for every pair of vertices u, v € G, the length of the
shortest path in H is at most % times the length in G.

The streaming algorithm to produce a (2k — 1)-spanner is quite easy: For each edge (u, v), if there
is no path between u and v of length at most 2k — 1 in H then add (u, v) to H.

H obviously satifies the (2k — 1)-spanner property since any edge that is not included can be
bypassed using the existing path in H and we simply splice together the paths corresponding to
each edge not in H to get a path in GG and each edge’s costs have been increased by at most a 2k — 1
factor.

It remains to show that H is not too large. We claim that / has size at most n'+/*. Let m be the
number of edges in H.

Observe that [ does not have any cycles smaller than 2% + 1 since the last edge of a cycle of length
at most 2k would not have been added. We will show that if H has too many edges then this is
not possible. To see this, we first prune H to remove all vertices of degee significantly lower than
the average degree d = 2m /n. That is, we define d’ = d/2 and repeatedly remove from the graph
H any vertex of degree < d’. At each step this may create additional vertices with degree smaller
than d’. The number of edges of H removed by this procedure must be < d'n = dn/2 = m so the
resulting graph H' (which is called the emphd’-core of H) must be non-empty.

We derive a contradiction from this fact. H’ has minimum degree at least d’ and no 2k-cycles or
smaller because it is a subgraph of /. Now consider a breadth-first search tree from any vertex of
H' of height k. The fan-out of the root is at least d’ and of each internal node is at least d’ — 1.
Since there are no cycles of length smaller than k, all these vertices must be distinct. Therefore
n < d'(d —1)*~' and hence d’ — 1 < n!'/*. Therefore d is O(n'/*) and hence m is O(n'*™1/%).

Lower Bounds Guruswami and Onak has derived lower bounds for a number of problems in
the graph semi-streaming model, based on communication complexity of direct sums of pointer-
jumping problems. For example they show that using p passes it requires n'T1/? /p®1) space to
determine whether or not two vertices are within distance 2(p + 1) of each other. However, other
problems can be done using n log®W n space.

Vertex Sketches Even nicer ideas are possible to allow one to use sketching for graphs, which
allows deletions as well as insertions of edges. A particularly beautiful idea is used by Ahn, Guha,
and McGregor is to produce a log®" n-size linear sketch of the neigborhood vector for each vertex
(for a total of n logo(l) n space) and then combine them to deduce connectivity properties and even
spanning forests in a single pass.

The general idea is to do hooking and linking of connected components as in the Boruvka or
Kruskal spanning tree algorithms but without the weight. One imagines the neighborhood vector



of each vertex as being described by a length (g) vector of that has a +1 value for each edge
touch the vertex depending on whether the neighbor has a smaller or larger vertex number (and is
otherwise 0). One can show that the sum of the vectors associated with a connected component
yields a vector that has £1 values associated with its outedges. Such a vector has all its £, norms
the same and one can use a sketch that allows one to sample components in proportion to their
value in order to derive an algorithm that will choose a linking edge for each component. Doing
this repeatedly (only logn levels of linking are enough) eventually connects the graph and from
this the spanning trees can be found. Because it is a linear sketch, it is completely generalizable to
deletions.

4 Beyond

We have only given a sample of problems and directions in streaming and sublinear algorithms.
There is much more to explore and more, including many open problems can be found at http://sublinear.info.



	Tolerant Testing
	Sublinear (,)-Approximation Algorithms
	Graph Semi-streaming Algorithms
	Beyond

