
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 14: Streaming using Coresets. Clustering
May 14, 2014

Lecturer: Paul Beame Scribe: Paul Beame

1 Streaming using Coresets

Recall the Reduce Property satisfied by all coresets: If S is an α-coreset for P and S ′ is a β-coreset
for S then S ′ is an αβ-coreset for P .

Also recall the disjoint union property satisfied by some cost functions C such as the Minimum
Enclosing Ball (MEB) cost function: IF S is an α-coreset for P , S ′ is an α-coreset for Q, and
P ∩Q = ∅ then S ∪ S ′ is an α-coreset for P ∪Q.

Theorem 1.1. Suppose that for every ε > 0, cost function C has coresets of size at most A(ε)
and has the disjoint union property, then for every data stream σ of points, there is a data stream
algorithm using spaceO(A(ε/ log n) log n) that returns a (1+ε)-approximation to infx∈Rd Cσ(x).

Proof. The algorithm will compute the elements of a tree of recursive coresets that provide succes-
sively smaller approximations for the point set given by σ. Let γ = ε/ log2 n and fix a “buffer size”
parameter B. If σ = y1 . . . yn. The algorithm will be based on a tree over these n elements that has
fan-inB at the bottom level and binary fan-in at all higher levels. It will have height log2(n/B)+1.
Each internal node of the tree will compute a (1 + γ)-coreset for the union of the values of its chil-
dren and hence each such node corresponds to a set of size at most A(γ) = A(ε/ log n). We can
think of the sequence of coresets at each level above the leaves as a separate stream. Whenever the
coreset associated with a node has been computed, all the elements in its subtree are deleted from
the memory. At the end of the algorithm, the only item remaining in storage will be the coreset
associated with the root. In particular this means that at any time, the memory contains at most
B elements from the input, and at most 2A(γ) elements from each other level of the tree. There-
fore the total storage is at most O(B + A(ε/ log n) log(n/B)) which is O(A(ε/ log n) log n) for
B = A(ε/ log n).

With this value of B, the (1 + γ)-coreset for each node one level above the leaves can simply be
the set consisting of its children. (It is 1-coreset for its children but we won’t use that fact.)

We prove inductively that any set h-levels above the leaves is at (1 + γ)h-coreset for the set of
inputs labelling the inputs in its subtree. As above, this is true for h = 1.

1

Given two (1+γ)h-coresets SL and SR for sets PL and PR, by the disjoint union property, SL∪SR
is an (1 + γ)h-coreset for PL ∪ PR and by the recursive property of coresets, a (1 + γ)-coreset S
for SL ∪ SR is a (1 + γ)h+1-coreset for PL ∪ PR.

Since

(1 + γ)log2(n/B)+1 = (1 + ε/ log2 n)log2(n/B)+1

≤ e(ε/ log2 n)(log2 n−log2B+1)

≤ (eε)1−(log2B+1)/ log2 n

≤ 1 + ε

the final set S at the root that remains at the end is a (1 + ε)-coreset for σ. The algorithm then
computes infx∈Rd CS(x) which is a (1 + ε)-approximation to infx∈Rd Cσ(x).

In particular this implies

Corollary 1.2. There is a data stream algorithm that produces a (1 + ε)-approximation for the
Minimum Enclosing Ball problem in d dimensions that uses space O(ε−(d−1)/2 log(d+1)/2 n).

In particular for d = 2 this requires space O(ε−1/2 log3/2 n). On the problem set you will show
that in the special case of our coreset construction the log(d+1)/2 n factor in the space bound can be
removed.

2 Clustering

In some sense the MEB problem can be seen as approximating a point set by a single center
together with its enclosing ball. We now consider algorithms that approximate a point set based on
k different elements, which we can think of as centers of clusters.

Definition 2.1. A metric space is pair (M,d) where d : M ×M → R+ satisfies

1. d(x, y) = 0 iff x = y. (If d(x, x) = 0 but it is possible to have d(x, y) = 0 even if x 6= y then
this is called a semi-metric. Most algorithms work equally well for semi-metrics.

2. (Symmetry) d(x, y) = d(y, x) for all x, y ∈M .

3. (Triangle Inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M .

2

Examples:
1. d(x, y) = ||x− y||p for some p ≥ 0.
2. d(x, y) = length of shortest path between vertices x and y in undirected graph G with non-
negative edge weights.

For problems on metric spaces, we will assume that the stream σ consists of a sequence of elements
ofM . We measure space in terms of the number of data points inM we store as well as the number
of bits of working storage.

We wish to summarize a data set using a small number of points. For a given set S ⊆M define

d(x, S) = min
y∈S

d(x, y).

We consider several different measures of the quality (or cost) of a setR ⊆M of≤ k representative
points for a stream σ by

• ∆∞(σ,R) = maxx∈σ d(x,R), which is k-center objective.

• ∆1(σ,R) =
∑

x∈σ d(x,R), which is the k-median objective and has been studied especially
when d(x,R) = ||x− y||1.

• ∆2(σ,R) =
∑

x∈σ d(x,R)2, which is the k-means objective and has been studied especially
when d(x,R) = ||x− y||2.

With all of the above, the set R of size k that minimizes the objectives may include points of M
that are not in σ.

THere are a number of streaming algorithms that produce good k-median and k-means (1 + ε)-
approximations using small space, particularly using coresets (sometimes in a more general ver-
sion that allows the small weighted set to include points outside of σ). These algorithms typically
involve some computation of weight values for the points in σ and sampling the elements of the
stream with probabilities proportional to those weights. These algorithms often have space require-
ments whose dependence on ε and d is of the form O(1/εd). However, more recent algorithms can
achieve space bounds whose dependence on d is polynomial but whose dependence on ε is worse,
of the form 2k/ε. These algorithms would take up too much time to present. We focus on a clean
simple algorithm for k-center approximation.

k-Center Approximation The k-center problem is NP-hard and even approximating the op-
timum k-center better than a factor 2 is NP-hard, so we will not be able to achieve that. We
will give a deterministic algorithm due to Charikar, Chekuri, Feder, and Motwani that produces
an 8-approximation. Guha has developed a more complicated algorithm that achieves (2 + ε)-
approximations. The basic ideas are somewhat similar to the thresholds that we will use in the
algorithm we discuss but it uses a similar cascaded structure as the generic coresets-based algo-
rithm.

3

Lemma 2.2. If x1, . . . , xk+1 ∈ σ ⊆M satisfy d(xi, xj) ≥ t for all i 6= j then for all R∗ ⊆M with
|R| ≤ k,

∆∞(σ,R∗) ≥ t/2.

Proof. Consider the mapping that sends each of x1, . . . , xk+1 to its closest point in R∗. By the
pigeonhole principle there exist xi 6= xj and r ∈ R∗ such that d(xi, R

∗) = d(xi, r) and d(xj, R
∗) =

d(xj, r). Therefore

2d(σ,R∗) ≥ d(xi, R
∗) + d(xj, R

∗) = d(xi, r) + d(xj, r) ≥ d(xi, xj) ≥ t,

which is what we needed to show.

Doubling Algorithm for k-Center
1: Initialize:
2: S ← First k + 1 points in the data stream
3: (x, y)←Closest pair of points in S
4: τ ← d(x, y)
5: R← S \ {x}
6: Process:
7: for each i > k + 1 do
8: if minr∈R d(xi, r) ≥ 2τ then
9: R← R ∪ {xi}

10: while |R| > k do
11: R←Maximal subset R′ ⊆ R such that d(r, s) ≥ 2τ for all r 6= s ∈ R′
12: τ ← 2τ
13: end while
14: end if
15: end for
16: Output: R

Lemma 2.3. The following invariants for the Doubling Algorithm hold each time step 7 is executed
and when the algorithm terminates

(1) ∀r 6= s ∈ R, d(r, s) ≥ τ ,

(2) ∆∞(σ,R) ≤ 2τ ,

and the following invariant holds immediately after step 5 and immediately prior to each execution
of step 11,

(3) ∀R∗ ⊆M with |R∗| ≤ k, ∆∞(σ,R∗) ≥ τ/2.

4

Proof. We prove these by induction. In the base case, (1) is immediate from the fact that τ is
the minimum distance in S ⊃ R. (2) follows from the fact that at this point σ = S and so
∆∞(σ,R) = d(x,R) = τ ≤ 2τ . (3) follows from the previous lemma applied to the set S.

For the induction step we have two cases depending on the value of minr∈R d(xi, r).

If minr∈R d(xi, r) ≤ 2τ , then the process loop makes no changes to R or τ and

∆∞(σ ∪ {xi}, R) = max{∆(σ,R), d(xi, R)} ≤ 2τ

using the inductive hypothesis (2) at the start of the iteration.

If minr∈R d(xi, r) > 2τ , then ∆∞(σ ∪ {xi}, R ∪ {xi} = ∆∞(σ,R) ≤ 2τ so step 9 preserves
property (2). Further, since minr∈R d(xi, r) > 2τ and the inductive hypothesis for (1) together
imply that step 9 preserves property (1). The only issue is that R might be too large Indeed we
must have |R| = k + 1 just before step 11 is reached. Then the previous lemma, together with (1)
imply (3) holds .

It remains to show that steps 11 and 12 together preserve properties (1) and (2). The fact that they
preserve (1) is immediate from fact that all points in R′ in line 11 are of distance at least 2τ apart
which is still at least τ after the value of τ is doubled in step 12.

To see that they preserve (2), let x ∈ σ be arbitrary. Then by definition d(x,R) ≤ ∆∞(σ,R) ≤ 2τ
by (2) just before step 11 is executed.

Let r be the closest point in R to x.

If r ∈ R′ then d(x,R′) ≤ d(x, r) ≤ 2τ

If r 6∈ R′ then becauseR′ ⊆ R is maximal, there must be some point s ∈ R′ such that d(r, s) < 2τ .
Now d(x,R′) ≤ d(x, s) by definition since s ∈ R′. Since s ∈ R′, we have

d(x,R′) ≤ d(x, s)

≤ d(x, r) + d(r, s) by the triangle inequality
< 2τ + 2τ = 4τ

Therefore after step 11 we have ∆∞(σ,R) < 4τ and by property (3), which holds just before step
11, ∆∞(σ,R∗) ≥ τ/2 implies that ∆∞(σ,R) < 8∆∞(σ,R) and this relationship is unaffected by
step 12. The doubling of τ in step 12 has the effect of the changing the bound ∆∞(σ,R) < 4τ
to ∆∞(σ,R) < 2τ which implies that (2) holds after each iteration of the process loop. It is also
immediate that |R| ≤ k after each iteration of the process loop.

This immediately proves the following theorem.

Theorem 2.4. The Doubling Algorithm uses space O(k) and produces a factor 8 approximation
to the optimum k-center for any k.

5

Note that though the true optimum may require choosing an element of the metric space not present
in the input stream, the above calculations show that for approximation purposes, it suffices to
choose R ⊆ σ. =

6

	Streaming using Coresets
	Clustering

