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1 Approximate Ranking

Before we move on, we briefly mention the last of the statistical problems we will consider for the
data stream model. The problem in this case is to approximately produce the rank of elements in
the input sequence. The relative rank of j with respect to a data stream with non-negative input
frequencies is

∑
i≤j fi/||f ||1. There are two versions of the question that have similar solutions:

Given j, estimate the relative rank of j within ε, or given a relative rank R ∈ [0, 1], produce an
element from the input stream whose relative rank is within ε of R.

In the first problem on problem set 2 you will analyze a general method for approximate ranks
based on the heavy hitters algorithms we have discussed. If only insertions are allowed, there is
a more space-efficient algorithm due to Greenwald and Khanna that uses somewhat related ideas
and would be a better choice in practice.

2 Geometric Streams and Coresets

We now consider streams where the input domain has more structure than simply [M ]. In particu-
lar, we consider streams of points from Rd for small d. In this context we will have to modify our
notion of space, since even a single value in R would require an unbounded number of bits. We
define Space to be the number of input points we keep (plus whatever bits we need).

A notion we will find particularly useful is that of a coreset for a point set relative to a cost function.
Coresets (a) yield enough information to approximately determine the optimum solution on the set
of points, but (b) “compose” nicely.

One simple problem that we will consider is the Minimum Enclosing Ball (MEB) Problem, which
requires one to find the minimum radius Euclidean ball that contains the input point set: Given a
point set P ⊆ Rd,

MEB(P ) = inf
x∈Rd

max
y∈P
||y − x||2.

A cost function C is a map from the input space Rd to the non-negative reals, parameterized by sets
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of points P ⊂ Rd, CP : Rd → R+. We will sometimes allow the cost function to be parameterized
by weighted point sets that have a non-negative weights on each point.

For example, the MEB Problem has a natural associated cost function over potential centers x ∈ Rd

given by
CP (x) = max

y∈P
||y − x||2.

The natural functions that coresets will allow us to approximate is infxCP (x) as well as finding an
x for which that minimum is approximated.

We note that for the MEB problem the function CP is monotone in P , in that for P ⊆ Q, CP (x) ≤
CQ(x) for all x ∈ Rd.

Definition 2.1. For any real number α ≥ 1 and cost function C parameterized by (weighted) point
sets in Rd is an α-coreset for P ⊂ Rd with respect to C if S ⊆ P and for all T ⊆ Rd and all
x ∈ R,

CS∪T (x) ≤ CP∪T (x) ≤ α CS∪T (x).

The key condition for a coreset is that it not only provides a summary of set P itself with respect to
approximation cost, it also provides summary of P with respect to all future extensions of P . It is
immediate that if CP is monotone in P , then first of the two inequalities is automatically satisfied
and it is only the upper bound of CP∪T by α CC∪T that needs to be argued.

We will show that the cost function CMEB for MEB has (1 + ε)-coresets of size O(1/ε(d−1)/2) for
every point set P . We will use this together with a generic streaming algorithm based on coresets
to derive a small space data streaming algorithm for the (1 + ε)-approximate MEB Problem.

Before we give this construction we give a simpler example of coresets.

Coresets for the Median We consider sets of points P in R and cost functionCP (x) = max(#{a ∈
P | a < x},#{a ∈ P | x < a}) which is minimized if x is the median of P . A set S ⊆ P that
yields a (1 + ε)-approximation to CP (x) produces a minimum that is an element whose relative
rank is 1/2± ε/2 where n = |P |. If the elements of P are a1 ≤ a2 ≤ · · · ≤ an then the coreset S
for P will consist of 1/ε elements aεn, a2εn, . . . , an each with weight εn.

Merge Property of Coresets If S is an α-coreset for P and S ′ is a β-coreset for Q then S ∪ S ′
is an αβ-coreset for P ∪Q.

Proof. We have

CS∪S′∪T (x) ≤ CP∪S′∪T (x) ≤ CP∪Q∪T (x) ≤ α CS∪Q∪T (x) ≤ αβ CS∪S′∪T (x)
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where the first and third inequalities follow from the α-coreset property of S for point set P using
sets T ′ = S ′ ∪ T and T ′′ = Q ∪ T , and the second and fouth inequalities from the β-coreset
property of S ′ for Q using sets T ′′′ = P ∪ T and T ′′′′ = S ∪ T .

Reduce Property of Coresets If S is an α-coreset for P and S ′ is a β-coreset for S then S ′ is an
αβ-coreset for P .

Proof. We have

CS′∪T (x) ≤ CS∪T (x) ≤ CP∪T (x) ≤ α CS∪T (x) ≤ αβ CS′∪T (x)

Definition 2.2. We say that a cost function C has the disjoint union property iff whenever S is an
α-coreset for P , S ′ is an α-coreset for Q, and P ∩Q = ∅ then S ∪ S ′ is an α-coreset for P ∪Q.

The MEB cost function clearly satisfies the disjoint union property but not all cost functions satisfy
this property.

The coreset construction for MEB will be based on a relatively small collection of directions in Rd

that approximate every possible direction in Rd.

Definition 2.3. For an angle θ > 0, we call a collection V = {v1, . . . , vt} ⊂ Rd of vectors in a
θ-net iff every u ∈ Rd there is a vi ∈ V such that the angle between u and vi is at most θ.

Theorem 2.4. For every θ > 0 there is θ-net consisting of O(1/θd−1) vectors.

Proof Sketch. The set of vectors within angle θ < 1 of a given vector on the unit sphere covers
a patch on the surface of the unit ball of area Ω(θd−1) since sin θ is Ω(θ) and the surface is of
dimension d− 1. We choose the θ-net to be a maximal collection of vectors on the unit sphere no
two of which have angle less than θ. Observe that the sets of vectors within angle less than θ/2
from each of these given vectors form disjoint regions on the surface of the sphere and each have
area Ω(θd−1). Since the unit sphere has constant surface area, there are at most O(1/θd−1) such
vectors in the θ-net.

From this we obtain coresets of size independent of the size of the point sets from which they are
derived.

Theorem 2.5. In d ≥ 2 dimensions the MEB cost function has (1+ε)-coresets of sizeO(1/ε(d−1)/2).
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Proof. Let V = {v1, . . . , vt} be a θ-net for Rd with θ =
√
ε. Let P ⊂ Rd. The coreset S for P for

the MEB cost function will be the set of at most 2t points

arg max
y∈P
〈vi, y〉 and arg min

y∈P
〈vi, y〉

over all vectors vi ∈ V . By construction its size is O(1/θd−1) = O(1/ε(d−1)/2) as claimed. The set
S determines a set of t pairs of parallel hyperplanes that sandwich the points in P in each of the t
directions given by V .

It remains to prove that S is a (1 + ε)-coreset for P . Let T ⊆ Rd and x ∈ Rd.

Since the cost function for MEB is monotone CS∪T (x) ≤ CP∪T (x).

It remains to show that CP∪T (x) ≤ (1 + ε)CS∪T (x). Let

z = arg max
y∈P∪T

||y − x||2

which implies that CP∪T (x) = ||z − x||2.

If z ∈ T then CP∪T (x) = ||z − x||2 ≤ CS∪T (x).

If z ∈ P , consider the vector xz and let ±vi be a vector in V that makes angle at most θ with xz.
Let z′ be the projection of z on the ray R through x in direction ±vi. Observe that the triangle
formed by x, z, and z′ is a right-angled triangle with hypotenuse xz and the angle between xz and
xz′ is at most θ.

Since z is a candidate for arg maxy∈P 〈vi, y〉 and arg miny∈P 〈vi, y〉 = arg maxy∈P 〈−vi, y〉. there
is an element of S whose projection on R is at least as far along R as z′ is and hence has distance
further than ||z′ − x||2. Therefore

CS∪T (x) ≥ CS(x) ≥ ||z′ − x||2
= ||z − x||2 cosφ

≥ ||z − x||2 cos θ

≥ CP∪T (x)θ

where φ ≤ θ is the angle between xz and xz′. Now the Taylor series for cos θ = 1 − θ2/2! +
θ4/4!− θ6/6! + · · · ≥ 1− θ2/2 for θ ≤ 1. Therefore

CP∪T (x) ≤ 1

cos θ
CS∪T (x)

≤ 1

1− θ2/2
CS∪T (x)

≤ (1 + θ2/2)CS∪T (x)

< (1 + ε)CS∪T (x)

as required.
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Next time we will show a generic method for converting coreset constructions like these to small
space streaming algorithms for approximating infxCP (x).
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