
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 12: Communication Complexity, Streaming Lower Bounds
May 7, 2014

Lecturer: Paul Beame Scribe: Paul Beame

We recall communication complexity definitions, D(f), DA→B(f), Rδ(f), RA→B
δ (f), Dt(f),

Rt,δ(f).

Last time we proved that D(EQ) = n + 1 and showed how this implies that any deterministic
protocol that exactly computes F0 requires space Ω(n). We did this by mapping x, y ∈ {0, 1}n to
x, y ⊆ [2n] such that F0(x y) = n + ∆(x, y) where ∆ is the Hamming distance between x and y.
We now derive essentially the same lower bound for approximately computing F0.

Lemma 0.1. Any deterministic streaming algorithm that approximates F0 within 7.5% error re-
quires space Ω(n).

Proof. We follow a similar pattern to the reduction we showed from computing EQ to exactly
computing F0 but instead we first encode x and y in such a way that if x 6= y then the Ham-
ming distance between their encodings is large. In particular, we will define an encoding function
E : {0, 1}n → {0, 1}3n such that x 6= y implies that ∆(E(x), E(y)) ≥ n/2. Suppose for now
that we have such a function E. On inputs x and y, respectively, Alice and Bob will simulate the
streaming algorithm for approximating F0 on input stream E(x)E(y) where again z is an encod-
ing of z that represents zi by the number 2i − zi. Since |E(x)| = 3n, E(x) will consist of 3n
elements from [4n]. Alice will send Bob the contents of the storage after E(x) has been read. We

have F0(E(x)E(y)) = 3n+∆(E(x), E(y)) so F0(E(x)E(y)) =

{
3n if x = y

3n+ n/2 = 7n/2 if x 6= y.

Given an approximation to F0 within 7.5% then if x = y the output must be at most 3.225n, which
is not within 7.5% of 7n/2, so that protocol could determine whether or not x = y given the
approximation to F0 and hence the storage must be at least n+ 1.

It remains to show how E can be constructed. We do this by showing that there is a subset C of
size at least 2n inside {0, 1}3n, no two of which are with Hamming distance n/2 of each other.
Alice and Bob can agree ahread of time on this subset and on some fixed map E from the elements
of {0, 1}n to this set. (The properties of the set C we want are those of a good error-correcting
code. In other applications it is important that such codes be explicitly constructed and have good
computational properties but in our application this only has to be an existential argument since
Alice and Bob are computationally unbounded.)

Write N = 3n. The way we find this subset will be via a greedy argument: We will maintain a set
W ⊆ {0, 1}N of candidate elements. At each step we choose some arbitrary element of W , add it

1

to C and then remove all strings in W within Hamming distance n/2 = N/6 of this string. It is
immediate that no two strings in W are within Hamming distance n/2.

There are precisely
(
N
k

)
strings in {0, 1}N at Hamming distance precisely k from any fixed string.

Therefore there are at most B(N, k) =
(
N
0

)
+
(
n
1

)
+ · · ·+

(
N
k

)
strings at distance at most N/6 from

any given string where k = bN/6c. We can bound this in terms of the binary entropy function
H2(δ) = δ log2(1/δ) + (1− δ) log2(1/(1− δ)).

Proposition 0.2. For k ≤ δN ≤ N/2, B(N, k) ≤ 2H2(δ)N .

Proof. By the binomial theorem, for any δ ≤ 1/2,

1 ≥
∑
i≤k

(
N

i

)
δi(1− δ)N−i

≥
∑
i≤k

(
N

i

)
δδN(1− δ)N(1−δ) since δ ≤ 1/2

≥
∑
i≤k

(
N

i

)
[δδ(1− δ)(1−δ)]N

= B(N, k)2−H2(δ)N

which immediately implies the claim.

Using this bound we see that one can obtain a set C of size at least 2(1−H2(δ))N since at most
2H2(δ)N elements are removed from W for each element of C chosen. In our case δ = 1/6 and
H2(1/6) = 0.650022... < 2/3. Therefore |C| ≥ 2N/3 = 2n as required.

For randomized protocols we can see that the equality function EQ has protocols with small com-
munication complexity. This should not be surprising since we can efficiently approximate F0

using randomized protocols, but it is a particularly clean argument.

Theorem 0.3. RA→B
δ (EQ) is O(log(1/δ)).

Proof. Let k = dlog2(1/δ)e. Alice and Bob use the shared random string to represent a random
k × n binary matrix A. Alice computes A · x mod 2 and sends this length k binary vector to Bob.
Bob computes A · y mod 2 and outputs 1 if and only if it agrees with what Alice sent.

Ax mod 2 = Ay mod 2 if and only if A(x − y) = 0 (mod 2). If x = y then this always holds.
Write z = x − y. Each entry of Az (mod 2) is a random linear combination r1z1 + . . . + rnzn
taken modulo 2. Let zi be some fixed non-zero entry in z, which must be ±1 and hence equivalent
to 1 modulo 2. For each choice of r1, . . . , ri−1, ri+1, . . . , rn, there is one choice of ri that will make
the total even and one choice that will make it odd, hence the probability that the i-th entry of Az

2

is 0 mod 2 is precisely 1/2. Since the rows are independent Az mod 2 is all 0 with probability
1/2k ≤ δ as required.

In order to obtain lower bounds for Rδ(f) for various other functions, it is useful to add one more
measure of the computational complexity of functions:

For any probability distribution µ onX×Y and error δ, defineDµ
δ (f) to be the minimum number of

bits required by any deterministic protocol to compute f correctly for all but a δ fraction of inputs
(x, y) under distribution µ. This is called the δ-error distributional communication complexity of
f . We also have the analogous definition for one-way protocols.

The following lemma, the easy half of a lemma due to Yao, relates randomized and distributional
communication complexity.

Lemma 0.4. Rδ(f) ≥ Dµ
δ (f) and RA→B

δ (f) ≥ Dµ,A→B
δ (f).

Proof. A randomized protocol with a given complexity C is a distribution over deterministic pro-
tocols with that complexity. For each input, the correctness of the randomized protocol implies
that the average error of these deterministic protocols is at most δ. Therefore if we choose an input
according to µ and a random one of these deterministic protocols, the error will be at most δ. The
order of these choices is not important, so there must be at least one protocol whose average error
under µ is at most δ, which is what we needed.

We now describe a few functions whose communication complexity is important for showing the
limitations of streaming algorithms:

Define Indexn : {0, 1}n × [n]→ {0, 1} by Index(u, j) = uj .

If Bob could speak first, computing Index would require at most log2 n bits since Bob could
simply send j to Alice and she could output uj .

However, it is easy to see that DA→B(Index) ≥ n since Alice’s message on input u must be the
same independent of Bob’s input and with the different inputs j, we would be able to reconstruct
Alice’s input from the different possible answers Bob would have to be able to produce from her
message.

It requires a more work to show,

Theorem 0.5. RA→B
δ (Indexn) ≥ (1−H2(δ))n.

Define GapHamming : {0, 1}n × {0, 1}n → {0, 1} by

GapHamming(x, y) =

1 if ∆(x, y) ≥ n/2 +

√
n

0 if ∆(x, y) ≤ n/2−
√
n

don’t care otherwise
.

3

Theorem 0.6 (Chakrabarti,Regev). R1/3(GapHamming) is Ω(n).

We will later prove the one-way lower bound for Indexn and use this to derive a one-way lower
bound for GapHamming. The general argument would take too long to develop.

The final problem we will consider is Unique Disjointness function UDISJ tn which is for t-party
communication. We identify its inputs x1, . . . , xt ∈ {0, 1}n as characteristic vectors of subsets
A1, . . . , At ⊆ [n].

UDISJ tn(A1, . . . , At) =

0 for all i 6= j, Ai ∩ Aj = ∅
1 there is a k ∈ [n] s.t. for all i 6= j, Ai ∩ Aj = {k}
don’t care otherwise.

Theorem 0.7. Rt,1/3(UDISJ
t
n) is Ω(n/t)

The first bound for t ≥ 3 was an Ω(n/t3) bound by Alon, Matias, and Szegedy and this was
improved by several authors until Gronemeier gave the above bound, which is optimal; earlier
Chakrabart, Khot, and Sun had shown the same lower bound for t-party one-way communication
complexity (which was sufficient for the application to streaming below) but were off by log t
factor in the general case. The techniques for all of these lower bounds use information theory
arguments that would take several lectures to develop.

Using this theorem we can obtain an essentially tight lower bound for approximating large fre-
quency moments.

Theorem 0.8. For p > 2, any 1/3-error streaming algorithm on inputs from [M] that approximated
Fp within a factor better than 2 requires space Ω(M1−2/p).

Proof. Let M = n. Choose t = (4n)1/p. On input A1, . . . , At for UDISJ tn the players run the
streaming algorithm for approximating Fp(A1 . . . At). The i-th for i < t player will simulate the
computation while the elements of Ai are read and will write the contents of the storage at the end
of its segment on the blackboard.

If A1, . . . , At are disjoint then each of the elements in [n] occurs are most once in the input so
Fp(A1 . . . At) ≤ n.

If A1, . . . , At intersect in k then Fp(A1 . . . At) ≥ fpk = tp = 4n. It follows that any approximation
of Fp within a factor of 2 can distinguish the two cases and hence allow the players to solve
UDISJ tn using at most (t−1)S bits of communication where S is the space bound. It follows that
(t− 1)S is Ω(n/t) and hence S is Ω(n/t2) = Ω(n/n2/p) = Ω(n1−2/p).

We now see how to use the GapHamming lower bound to derive lower bounds for the computa-
tion of F0. This lower bound approach is due to Woodruff.

4

Theorem 0.9. For ε = 1/
√
n, any streaming algorithm computing F0 with error at most ε requires

Ω(1/ε2) space.

Proof. For x, y ∈ {0, 1}n that are inputs to GapHamming if we view x and y as subsets of [n],
then F0(xy) = |x ∪ y|. It is not hard to see that as sets, x and y cover the elements of x ∩ y
twice and cover the elements of the symmetric difference x∆y = (x ∪ y)− (x ∩ y) once each. It
is therefore easy to see that |x| + |y| + |x∆y| = 2|x ∪ y|. The size of x∆y as a set is precisely
the Hamming distance ∆(x, y). Therefore we have |x| + |y| + ∆(x, y) = 2F0 or, alternatively,
∆(x, y) = 2F0 − |x| − |y|.

we can use any streaming approximation for F0 to compute a very good approximation to ∆(x, y)
with communication not much larger than the space of the streaming algorithm. Alice will simulate
the streaming algorithm and send both the current contents of the storage as well as |x| to Bob
who will compute the approximation to F0 and hence of ∆(x, y) from which he can compute
GapHamming. Sending |x| requires only log2 n bits. If we can approximate F0 within a factor
better than 1± ε Then we can approximate ∆(x, y) within a factor 1± O(ε) since wlog |x|+ |y|,
F0, and 2F0 − |x| − |y| are all linear in n. (The players can easily determine |x| + |y| and reject
any inputs for GapHamming for which |x|+ |y| is sublinear in n. Any approximation of ∆(x, y)
within a 1±ε factor for ε = 1/

√
n can computeGapHamming and hence requires communication

Ω(n) = Ω(1/ε2).

We finish with the lower bound proofs for Indexn and GapHamming. For the former we need
to use entropy. For a random X , write px = P[X = x] and define H(X) =

∑
x px log2(1/px).

H(X, Y) is just H applied to the pair of random variables (X, Y) using pxy = P[X = x, Y = y].

We have the following facts:

• If X ∈ S then by the convexity of the logarithm, H(X) ≤ log2 |S|.

• If we define H(X|Y) = EyH(X|Y = y) where X|Y = y is the random variable given by
X conditioned on Y = y, then H(X|Y) = H(X, Y)−H(Y). This latter is called the chain
rule.

The randomized lower bound for the Index function follows immediately from the following
lemma.

Lemma 0.10. Let µ be the distribution of (X, J) on {0, 1}n × [n] that chooses X uniformly on
{0, 1}n and independently chooses J uniformly from [n]. Then DA→B,µ

δ (Indexn) ≥ (1−H2(δ))n.

Proof. Let Π (for “protocol”) be the distribution on the message sent by Alice. Given J and Π,
Bob’s answer is fixed, so in order for Bob to give the correct answer XJ with probability at least

5

1 − δ, XJ itself must have a bias of at least 1 − δ towards some fixed value conditioned on the
values of Π and J . Therefore it must satisfy H(XJ |Π, J) ≤ H2(δ). Expanding on this we have

H2(δ) ≥ H(XJ |Π, J)

=
∑

j = 1nH(xj|Π, J = j) P(J = j)

=
1

n

n∑
j=1

H(Xj|Π, J = j)

=
1

n

n∑
j=1

H(Xj|Π) since Π and Xj do not depend on J

≥ 1

n

n∑
j=1

H(Xj|Π, X1, . . . , Xj−1) since adding conditions only reduces entropy

=
1

n

n∑
j=1

[H(X1, . . . , Xj,Π)−H(X1, . . . , Xj−1,Π)] by the chain rule

=
1

n
[H(X1, . . . , Xn,Π)−H(Π)] since the sum telescopes

=
1

n
[H(X1, . . . , Xn)−H(Π)] since Π is determined by X1, . . . , Xn

=
1

n
[n−H(Π)] since X in uniform

= 1−H(Π)/n.

Rearranging gives the claim of the lemma.

The following proof is due to Jayram, Kumar, and Sivakumar. The proof by another argument was
due to Woodruff.

Theorem 0.11. RA→B
1/3 (GapHamming) is Ω(n).

Proof Sketch. Assume without loss of generality that n is odd. The general idea is a reduction
using the lower bound for Indexn. The reduction itself will use a large number of additional
shared random bits. We show how to derive a randomized protocol for Index given a protocol
for GapHamming. The idea will be a method to produce correlated random bits for Alice and
Bob without interaction so that if uj is 1, the bits will differ with probability at least 1/2 + c/

√
n

and if uj is 0, they will differ with probability at most 1/2 − c/
√
n. Alice and Bob will repeat

this independently n times to produce correlated random bit strings in which each pair of bits has
the same bias towards either equality or difference. Hence by Chernoff bounds these strings will
almost surely have Hamming distance either at least n/2 + c′

√
n or at most n/2− c′

√
n

It remains to show how a single pair of correlated bits is produced: Alice and Bob will use the
random bits to produce a random string r ∈ {−1, 1}n. Alice will interpret her input u as a vector

6

of±1 entries, v, given by vi = (−1)ui . Alice’s bit will be 1 if and only if
∑

i rivi is positive. Bob’s
bit will be 1 if and only if rj = 1

Now for each fixed value of (ri)i 6=j write w =
∑

i 6=j rivi. Since n is odd, w is the sum of an even
number of ±1 values and hence is even.

If w 6= 0 then |w| ≥ 2 and the sign of
∑

i rivi = rjvj + w must be the same as the sign of w, and
hence independent of rj . Therefore in this case, Alice’s and Bob’s bits are independent and hence
are equal with probability 1/2.

If w = 0 then Alice’s bit is the sign of rjvj = rj(−1)uj . Therefore Alice’s bit is the same as
that of Bob’s bit iff uj = 0, which is precisely the condition we want to hold. Now w = 0
happens with probability

(
n−1

(n−1)/2

)
which is ∼ 1/

√
2πn. Therefore over the random choice of r

this has probability of being different of 1/2(1 + 1/
√

2πn) if uj = 1 and of 1/2(1 − 1/
√

2πn) if
uj = 0

7

