
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 11: J-L Lower Bound, Communication Complexity
May 5, 2014

Lecturer: Paul Beame Scribe: Paul Beame

We finish the proof of the lower bound on the dimension required for the Johnson-Lindenstrauss
Lemma to hold:

Theorem 0.1 (Alon). There is a set of n + 1 points in Rn such that for 1/2 ≥ ε > 1/
√
n, any

mapping f : Rn → Rk that preserves the squares of `22 distance within (1± ε) factor requires that
k = Ω(logn

ε2 log(1/ε)
).

we note that this theorem implies that the distributional Johnson-Lindenstrauss Lemma has a di-
mension lower bound of Ω(log(1/δ)

ε2 log(1/ε)
).

Last time we showed that by considering the images under f of the n + 1 points 0 = (0, . . . , 0)
and e1 = (1, 0, . . . , 0) through en = (0, . . . , 0, 1), we could find an n × n symmetric real matrix
B of rank at most 2k that is nearly the identity matrix in that its diagonal entries are all 1 and its
off-diagonal entries are all at most 4ε in absolute value. We also proved the following Lemma.

Lemma 0.2. Let B = (bij)ij , be an n×n symmetric real matrix with bii = 1 for all i and |bij| ≤ ε
for all i 6= j. Then the rank r of B is at least

n

1 + (n− 1)ε2
.

This lemma does not yield a strong enough lower bound when applied to the matrix B derived
from the images under f because the lower bound is only Ω(1/ε2) and does not depend on n.

However, if the off-diagonal entries were bounded by 1/
√
n in absolute value then the lower bound

on the rank r would be at least n/2. The obvious way we can reduce the magnitude of the off-
diagonal entries while preserving the diagonal entries is raise each entry to some fixed power `.
This may increase the rank of B but Alon showed that this operation does not increase the rank by
too much.

Definition 0.3. For a matrix B = (bij)ij , write B(`) to denote the matrix whose ij-th entry is
b`ij . (This is powering with respect to the Hadamard matrix product where the product of matrices
A = (aij)ij and B = (bij)ij is the matrix C = A ◦B whose ij-th entry is aijbij .)

Lemma 0.4. If rank(B) ≤ k then rank(B(`)) ≤
(
k+`−1
`

)
≤
(
k+`
`

)
.

1

Proof. Let u1, . . . , uk be a basis for the row space of B. Therefore we can write the i-th row of B
as

ai1u1 + · · · aikuk
for some real values ai1, . . . , aik and in particular

bij = ai1u1j + · · · aikukj.

Then

b`ij = (ai1u1j + · · · aikukj)`

=
∑

`1+···+`k=`

ci`1...`ku
`1
1ju

`2
2j · · ·u

`k
kj

Where ci`1...`k is constant depending on the values of ai1, . . . , aik, `1, . . . , `k. (In particular it does
not depend on j.) This means that the i-th row of B(`) is a linear combination of the vectors

(u`111u
`2
21 · · ·u

`k
k1, u

`1
12u

`2
22 · · ·u

`k
k2, . . . u

`1
1nu

`2
2n · · ·u

`k
kn),

each with coefficient ci`1...`k . This means that rank(B(`)) is at most the number of choices of
`1, . . . , `k that sum to `. We can identify each such choice with a binary vector of length k + `− 1
having ` 1s and k − 1 0s, where the 0s denote the separators between the k runs of 1s (possibly
empty) whose length is the associated `i. There are precisely

(
k+`−1
`

)
such choices.

Proof of Theorem 0.1. In order to reduce the off-diagonal entries of our matrixB to at most 1/
√
n,

it suffices to have (4ε)` ≤ 1/
√
n, that is

√
n ≤

(
1
4ε

)`, or logn
2
≤ ` log2(

1
4ε

). Therefore we choose
` = d logn

2 log2(1/(4ε))
e.

Since the matrixB has rank at most 2k, by the above two lemmas, we have
(
2k+`
2k

)
≥ rank(B(`)) ≥

n/2. To analyze this we use one of the standard upper bounds on binomial coefficients: It is
immediate that

(
n
m

)
≤ nm

m!
and one can easily show by induction and the definition of e that m! ≥

(m/e)m and hence that
(
n
m

)
≤ (ne/m)m.

Apply this we have that
(
2k+`
`

)
≤ [(1 + 2k/`)e]`. Therefore we have

[(1 + 2k/`)e]` ≥ n/2.

Taking log base 2 and dividing by ` we have

log2((1 + 2k/`)e) ≥ log2 n− 1

`
= 2 log2(1/(4ε))− o(1)

by the definition of `. This implies that log2(1+2k/`) ≥ 2 log2(1/ε)−C for some constant C < 2.
Since the right-hand quantity grows large, it must be the case that 2k/` is larger than 1 and hence
we obtain that log2(2k/`) ≥ 2 log(1/ε) − C ′ for some constant C ′. Exponentiating implies that
2k/` is Ω(1/ε2). Therefore k is Ω(`/ε2) which matches the theorem statement when we plug in
the value of `.

2

Continuing a focus on lower bounds we introduce communication complexity which provides the
main vehicle for proving lower bounds for streaming algorithms (among its many applications).

1 Communication Complexity

Communication complexity studies the communication required by some number of computation-
ally unbounded players, each of whom receives part of the input, and who cooperate to compute
some function of the entire input.

In the cases we consider, all communication is done by writing on a shared blackboard. (In the case
of two players this is equivalent to sending messages to each other.) The complexity is measured
in terms of the number of bits sent.

In the 2-party case we have two players, typically denoted Alice and Bob. Alice receives as input
x ∈ X = {0, 1}n, and Bob receives y ∈ Y = {0, 1}n and they must exchange messages to
compute some function f(x, y). We require that f(x, y) is the last message sent/written on the
blackboard. Only one play can write on the blackboard at a given time.

A communication protocol is given by a binary tree in which each node corresponds to a different
prefix of what is written on the blackboard. Each internal node is labeled by the player whose turn
it is to write after that prior communication has been sent. Whether the protocol next sends a 0
or a 1 depends only on the input of the player who speaks. We can think of this dependence as a
function mapping the set of inputs of the player who speaks to {0, 1}.

In addition to general 2-party protocols we also will consider 1-way protocols in which Alice sends
one message to Bob and Bob must then immediately produce f(x, y).

In deterministic protocols, there is a fixed function at each node and this precisely determines what
bit to communicate next. Randomized protocols will be important for us; there are two natural
versions depending on how the random bits are shared. In the case of private protocols, each
player has its own source of random bits and so each function in the protocol tree is simply a
randomized function of the input that is determined in part by the private random bits. In public
protocols, there is a single source of randomness that can be ready by all players. Since each
fixed choice of the shared random bits yields a separate deterministic function, we can think of the
randomized protocols with public randomness as distributions over deterministic protocols.

For a given protocol P , we can define CP to be the maximum number over all inputs to f of the
number of bits sent by players using P . Define

• D(f) = min
P computes f,P deterministicCP , the minimum worst-case number of bits com-

municated among all deterministic 2-party protocols that output f(x, y) for all inputs (x, y) ∈
X × Y . Write DA→B(f) for the analogous one way version.

3

• Rδ(f) is the minimum number of bits sent in any 2-party randomized protocol with public
randomness that for every x ∈ X , y ∈ Y computes f(x, y) correctly with probability at least
1− δ. Write RA→B

δ (f) to be the analogous definition for 1-way randomized protocols.

• Let Rpriv
δ (f) and Rpriv,A→B

δ (f) be the corresponding definitions for 2-party protocols with
private randomness.

We can also consider protocols for t players in which each player receives its own private input
xi ∈ Xi and the function to be computed is f(x1, . . . , xt). At each step in these protocols, the
player next to speak is determined by the communication prior to that step.

We will apply communication complexity by considering the input steam as being partitioned
among the players so that the function to be computed or approximated by the streaming algorithm
takes as input the stream x1x2 or x1 . . . xt. If the streaming algorithm uses space S, the players can
simulate the streaming algorithm in which players 1, . . . , t speak in order, player i simulates the
algorithm during the reading of xi, and player iwrites the content of the memory on the blackboard
at the end of his segment. In particular, the total communication will be at most (t − 1)S. Hence
a lower bound on communication protocols can yield a lower bound on the space used by the
protocol.

We add a subscript t to the above complexity definitions to represent t-party protocols; i.e., Dt(f)
and Rt,δ(f).

Randomized protocols will be need to simulate randomized streaming algorithms. Although the
model with private randomness at first seems somewhat more natural than the model with public
randomness, the following theorem of Newman shows that the two are not significantly different.

Theorem 1.1. Let f : X × Y → {0, 1} where X, Y ⊆ {0, 1}n. Then

Rpriv
2δ (f) ≤ Rδ(f) +O(log n+ log(1/δ)).

Proof Sketch. We show how to simulate public randomness with private randomness at the expense
of a small amount of additional error: The original algorithm with public randomness, running the
algorithm on a random string is like an experiment with a biased coin that has a probability of at
most δ of landing tails. By a Chernoff bound one can show that after making a polynomial (in n)
number of independent samples of random strings, the probability of observing larger than error
2δ is exponentially small, say less than 2−2n. This shows that there exists a polynomial-size set
R of random strings such that the error in choosing a random one of these string is at most 2δ for
every (x, y) ∈ X ×Y . Alice now simply uses her random bits to choose a random sample element
in this R and then sends this as part of her first message.

Definition 1.2. A combinatorial rectangle in X × Y is a set of the form A × B for some subsets
A ⊆ X and B ⊆ Y .

4

Lemma 1.3. For any deterministic 2-party protocol, the set of the inputs (x, y) ∈ X × Y that
reach each node in the protocol tree is a combinatorial rectangle.

Proof. This is easily proved by induction starting at the root of the protocol tree. This set is
X × Y at the root. At each node, if we already know that the associated set for a given node
is combinatorial rectangle, then the same property holds for its children since the condition for
deciding which child an input leads to depends only on the input of the player whose turn it is to
speak.

In particular, each leaf of the protocol tree, which has the property that the protocol produces the
same output for all of the inputs in the rectangle associated with that leaf. This lets us prove the
following easy property.

Definition 1.4. Define the Equality predicate EQ : {0, 1}2n → {0, 1} by EQ(x, y) = 1 if and
only if x = y.

It is immediate that D(EQ) ≤ n + 1 via the protocol in which Alice sends x and Bob responds
with the answer f(x, y).

Proposition 1.5. D(EQ) = n+ 1

Proof. Consider the 2n × 2n matrix MEQ that has rows indexed by elements of X and columns
indexed by Y , and whose (x, y) entry has value EQ(x, y). It is immediate that MEQ is the 2n× 2n

identity matrix.

Observe that no two distinct points on the diagonal (x, x) and (x′, x′) on which EQ evaluates to 1
can be in a combinatorial rectangle on which the output is constant since, otherwise, (x, x′) would
be in the rectangle and EQ(x, x′) = 0. There are 2n diagonal elements and each much reach
a separate leaf of the protocol. Moreover, there must be at least 1 leaf reached by off-diagonal
elements. Therefore there are at least 2n + 1 leaves and so the height of the protocol tree must be
at least n+ 1.

We immediately obtain the following corollary for streaming algorithms, which shows that we
need to move beyond exact deterministic algorithms to find small space algorithms:

Corollary 1.6. Any deterministic streaming algorithm that exactly computes F0 requires space
Ω(n).

Proof. On inputs x and y, respectively, Alice and Bob can simulate the streaming algorithm for
F0 on input stream xy where x is an encoding of x that represents xi by the number 2i − xi.
(Alternatively one can consider this as a mapping of the bit xi as two bits where 0 is mapped to

5

01 and 1 is mapped to 10 and viewing the resulting input as the characteristic vector of a subset of
[2n].) Alice will send Bob the contents of the storage after x has been read.

Observe that if xi = yi then their corresponding elements together contribute just one element to
F0(xy), but if xi 6= yi then their corresponding elements yield a count of two for F0(xy). Therefore

F0(xy) = n+ ∆(x, y)

where ∆(x, y), the Hamming distance between x and y, is the number of coordinates on which x
and y differ. Observe that x = y iff ∆(x, y) = 0. Now, if the protocol Bob can compute F0 exactly,
then Bob can compute ∆(x, y) = F0(xy) − n and hence determine EQ(x, y). The storage must
be at least n+ 1 which is Ω(n).

6

	Communication Complexity

