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Recall that in the Tug-of-War Sketch we began with a basic sketch y computed using a 4-wise
independent h : [M ]→ {−1, 1}where y2 is an unbiased estimator of F2. The final sketch averages
these sketches in groups of k = d6/ε2e such sketches and then outputs the median of O(log(/1δ))
of these averages.

As we observed earlier, the sketch for each group of k estimators is given by a k × M matrix
A ∈ {−1, 1}k×M and the average y = A · f . The averaged estimator is

∑k
i=1 y

2
i /k = ||y||22/k. The

Tug-of-War Sketch chooses A with independent rows and within each row the entries are 4-wise
independent. With those properties we showed that with probability at least 2/3.

(1− ε)F2 = (1− ε)||f ||22 ≤ ||y||22/k ≤ (1 + ε)||f ||22 = (1− ε)F2.

If we write A′ = 1√
k
A then with probability at least 2/3 we have

(1− ε)||f ||22 ≤ ||A′ · f ||22 ≤ (1 + ε)||f ||22.

We would like to have this linear map succeed with much higher probability 1−δ by, say, increasing
the number of rows by an O(log(1/δ)) factor. However, the Chebyshev’s inequality argument and
the 4-wise independence in A do not yield such a decrease in failure probability.

What if the entries in A are uniformly independent? Achlioptas [] analyzed precisely this case.

Theorem 0.1 (Achlioptas). For k ≥ 2 log2(1/δ)
ε2/2−ε3/3 , if the elements of a k ×M matrix A are indepen-

dently to be ±1 with probability 1/2, then, for any fixed vector x ∈ RM , with probability at least
1− δ,

(1− ε)||x||22 ≤ ||A · x||22/k ≤ (1 + ε)||x||22.

Note that 1/(ε2/2 − ε2/3) ≤ 6/ε2. We will discuss the ideas behind the proof of the theorem but
first we discuss a simple application of the theorem to prove a lemma originally proved by Johnson
and Lindenstrauss.

Lemma 0.2 (Johnson-Lindenstrauss Lemma). For any ε > 0 and integer n, and k ≥ k0 =
O(ε−2 log n), for every set P of n points in Rd there is a (linear) map f : Rd → Rk such that
for every u, v ∈ P ,

(1− ε)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ε)||u− v||22.
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Proof. This follows immediately from the above theorem using the probabilistic method. Let
M = d, and δ = 1/n2+c for c > 0. Let

k = d 2 log2(1/δ)

ε2/2− ε3/3
= d(4 + 2c) log2 n

ε2/2− ε3/3
.

For A ∈ {−1, 1}k×n define

fA(x) =
A · x√
k
.

We show that for uniformly random A, fA satisfies the properties of the J-L Lemma with probabil-
ity at least 1− n−c/2.

For each u 6= v ∈ P , write x = u − v, then fA(x) = fA(u) − fA(v) = A√
k
(u − v) = A√

k
(x). By

the above theorem, except with probability at most δ for A chosen at random,

(1−ε)||u−v||22 = (1−ε)||x||22 ≤ ||fA(u)−fA(v)||22 = ||fA(x) ≤ (1+ε)||x||22 = (1+ε)||u−v||22.

Since there are only
(
n
2

)
pairs u 6= v ∈ P , by a union bound, the probability that there is some pair

u, v ∈ P where the fA fails to satisfy the required preservation of `2 norm is at most
(
n
2

)
δ ≤ n−c/2

by definition of δ. Thus, not only does such an f with these properties exist, almost all functions
fA have the property.

The Johnson-Lindenstrauss Lemma is very useful because it allows one to project high-dimensional
data to a very lower dimensionsal space while approximately preserving all of its metric properties
under the `2 metric. Many algorithms have runtimes that are exponential in the dimension and with
only logarithmic dimension these algorithms become polynomial. It is also useful to note that the
reduced dimension depends only on the number of points and not on the original dimension.

The theorem is sometimes called a Distributional Johnson-Lindenstrauss Lemma because of the
connection to the J-L Lemma. Johnson and Lindenstrauss originally proved their result by be-
ginning with a random rotation chosen from a spherically symmetric distribution followed by a
projection on the first k coordinates. Vectors on the sphere can be chosen by selecting independent
random entries according to the Gaussian distribution N(0, 1) and then normalizing so that the
vector has `2 norm 1.

It was later shown by Indyk and Motwani that the same properties hold by simply choosing each
entry of A independently from N(0, 1). Achlioptas, who described his version using ±1 as a
“database-friendly” version of the Johnson-Lindenstrauss Lemma because of the ease of comput-
ing with it, also showed that the same bound for the theorem holds if one independently sets each
entry to 0 with probability 2/3 and scales everything up by a

√
3 factor to compensate for the fact

the expected squared length would otherwise be only k/3. The 0s reduce the number of entries in
the vector that need to be updated.

The sparsest matrices known for which one can prove a Distributional Johnson-Lindenstrauss
Lemma are due to Kane and Nelson [] who show that a k ×M matrix in which there are s blocks
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of rows and precisely one randomly chosen ±1 entry in each column of each block (with all other
entries 0) will also work for k = O(ε−2 log n) provided s = Ω(ε−1 log n) (and therefore there is
a Θ(ε) fraction of non-zero entries). Note that this matrix is remarkably like the matrix for the
Count Sketch. This is nearly tight since it is known that Ω((ε log(1/ε))−1 log n) non-zero entries
per column are required for a distributional Johnson-Lindenstrauss Lemma to hold.

The general idea of the proofs is fairly similar. First, one begins with a distribution on each entry
aij of A such that E(aij) = 0 and V ar(aij) = E(a2

ij) = 1. Then

E((A · x)2
i ) = E((

∑
j

aijxj)
2)

=
∑
j

∑
j′

xjxj′E(aijaij′)

=
∑
j

x2
jE(a2

ij) +
∑
j′ 6=j

xjxj′E(aijaij′)

=
∑
j

x2
jE(a2

ij) since E(aij)E(aij′) = 0 for j 6= j′

=
∑
j

x2
j since V ar(aij) = 1

= ||x||22
Therefore the square of each coordinate is an unbiased estimator of ||x||22. Because of indepen-
dence, the proof for the deviation being small follows from methods similar to those used to prove
Chernoff bounds and yields similar probability of error. In the case of random ±1 elements, the
method requires bounding all even moments of the distribution. We omit the details.

Alon showed that the dimension at which the Johnson-Lindenstrauss approximately preserves `2
distances is nearly optimal. As a consequence this shows that the dependence on the error ε in the
Tug-of-War sketch is nearly optimal.

Theorem 0.3 (Alon). There is a set of n + 1 points in Rn such that for 1/2 ≥ ε > 1/
√
n, any

mapping f : Rn → Rk that preserves the squares of `22 distance within (1± ε) factor requires that
k = Ω( logn

ε2 log(1/ε)
).

Proof. Let the n + 1 points be 0 = (0, . . . , 0) and e1 = (1, 0, . . . , 0) through en = (0, . . . , 0, 1).
Without loss of generality we can assume that f(0) = 0.

Let vi = f(ei) for i = 1, . . . , n. Since ||ei − 0||22 = ||ei||22 = 1 must be approximately preserved
for each i,

1− ε ≤ ||vi||22 ≤ 1 + ε.

Similarly for i 6= j, ||ei − ej||22 = 2 so

2(1− ε) ≤ ||vi − vj||22 ≤ 2(1 + ε).
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But, by bilinearity of the inner product and its symmetry over R,

||vi − vj||22 = 〈vi − vj〉2 = 〈vi, vi〉 − 2〈vi, vj〉+ 〈vj, vj〉,

from which it follows that |〈vi, vj〉| ≤ 4ε.

Consider the n × n matrix B̃ whose ij-th entry is 〈vi, vj〉. B̃ has rank at mose k since B̃ = V TV
where V is an n× k matrix whose i-th column is vi.

The matrix B̃ is very close to an identity matrix. It is symmetric, its diagonal entries are within ε
of 1, and its off-diagonal entries are within 4ε of 0. We will prove a lower bound on the rank of
any such matrix in order to prove a lower bound on k.

To make this calculation convenient, we first normalize B̃ by dividing the i-th row of B̃ by ||vi||22
which ensures that the diagonal is all 1’s. This can increase the off-diagonal entries by a 1/(1− ε)
factor, which still leaves them O(ε) and does not change the rank. This can mess up the symmetry
of B̃ in the resulting matrix B′, so we set B = (B′ + (B′)T )/2 which is symmetric. This matrix
has 1 in all diagonal entries and O(ε) off the diagonal.

Lemma 0.4. Let B = (bij)ij , be an n×n symmetric real matrix with bii = 1 for all i and |bij| ≤ ε
for all i 6= j. Then the rank r of B is at least

n

1 + (n− 1)ε2
.

Proof. Symmetric real matrices have all real eigenvalues and can be diagonalized. That is, there
are real values λ1, . . . , λn such that B = ADA−1 where

D =


λ1

λ2

. . .
λn

 ,
and λr+1, . . . , λn = 0 sinceB has rank r. Recall that the trace of a matrix is the sum of its diagonal
entries and the trace of a matrix product is independent of the order of the matrices. By definition,

n = Trace(B) = Trace(ADA−1) = Trace(DAA−1) = Trace(D) =
n∑
i=1

λi =
r∑
i=1

λi.

Furthermore
∑n

i=1 λ
2
i = Trace(B2) = Trace(BTB) =

∑
ij b

2
ij since B is symmetric. But b2ij = 1

for i = j and b2ij ≤ ε2 for i 6= j so
∑n

i=1 λ
2
i ≤ n + n(n − 1)ε2. However,

∑n
i=1 λ

2
i =

∑r
i=1 λ

2
i ≥

r(n/r)2 = n2/r since
∑r

i=1 λi = n. Putting these two together we get n2/r ≤ n + n(n − 1)ε2

which yields the claimed bound on r by rearranging the inequality.

we will finish the rest of the proof in the next class.
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