Lecture 9: Approximating F_{p} (or $\|f\|_{p}$) for $p>2$

April 28, 2014
Lecturer: Paul Beame
Scribe: Paul Beame

We continue the analysis of Andoni's algorithm, which uses the exponential distribution $\operatorname{Exp}(1)$ given by $\mathrm{P}[x>t]=e^{-t}$ for $t \geq 0$ and rescales each f_{j} using the an independent exponential distribution to get z_{j} so that with good probability $\|z\|_{\infty}$ is a constant factor approximation to $\|f\|_{p}$. The algorithm runs a variant of the Count sketch on z in order to approximate $\|z\|_{\infty}$. Though the Count sketch does not yield constant factor approximations in general, z is sufficiently skewed that this variant does work well.

More precisely, for each j, define $z_{j}=f_{j} / u_{j}^{1 / p}$ where $u_{j} \sim \operatorname{Exp}(1)$ are chosen independently.
The vector z will be part of our analysis but does not directly appear in the description of the algorithm as a streaming algorithm.

Max-stable algorithm for $\|f\|_{p}$ approximation:

1: Initialize:
$k \leftarrow\left\lceil M^{1-2 / p} \log _{2} M\right\rceil$
$y \leftarrow$ length k vector of real numbers
: Use Nisan generator to approximate the following random choices:
Choose $u_{1}, \ldots, u_{M} \sim \operatorname{Exp}(1)$ independently.
Choose $h:[M] \rightarrow[k]$ uniformly at random.
Choose $g:[M] \rightarrow\{-1,1\}$ uniformly at random.
Process:
for each i do

$$
y_{h\left(x_{i}\right)} \leftarrow y_{h\left(x_{i}\right)}+c_{i} \cdot g\left(x_{i}\right) / u_{x_{i}}^{1 / p}
$$

end for
Output: $\|y\|_{\infty}=\max \left\{y_{x}: a \in[k]\right\}$.
We will show that the above algorithm produces a factor 4 approximation, say, for $\|f\|_{p}$ with probability bounded above $1 / 2$ and hence using the usual median, running $O(\log (1 / \delta))$ copies in parallel yields a factor 4 approximation with probability at least $1-\delta$.

This algorithm corresponds to a sketch matrix of the following form:

$$
\left[\begin{array}{ccccccccc}
0 & 0 & -1 / u_{3}^{1 / p} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & +1 / u_{2}^{1 / p} & 0 & 0 & 0 & \cdots & -1 / u_{M-2}^{1 / p} & 0 & 0 \\
0 & 0 & 0 & -1 / u_{4}^{1 / p} & 0 & \cdots & 0 & 0 & 0 \\
+1 / u_{1}^{1 / p} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 / u_{M}^{1 / p} \\
0 & 0 & 0 & 0 & +1 / u_{5}^{1 / p} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1 / u_{M-1}^{1 / p} & 0
\end{array}\right]
$$

which is the product of

$$
P_{g, h}=\left[\begin{array}{cccccccccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & \cdots & \cdots & -1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & 0 & +1 & 0 & \cdots & \cdots & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
+1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & +1 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & -1 & 0
\end{array}\right]
$$

and

The vector $z=P_{g, h} \cdot f$ and $y=D_{u} P_{u} f$.
Last time we proved
Claim 1: $\mathbb{P}\left[\frac{\|f\|_{p}}{2} \leq\|z\|_{\infty} \leq 2\|f\|_{p}\right]>3 / 4$.
In order to prove that $\|y\|_{\infty}$ is a good estimate for $\|z\|_{\infty}$ we need to show that z is sufficiently skewed.

Claim 2: For any $H, \mathbb{E}\left[\#\left\{j:\left|z_{j}\right| \geq \frac{\mid f \|_{p}}{H}\right\}\right] \leq H^{p}$.

Proof. Let $Y_{j}=\left\{\begin{array}{ll}1 & \text { if }\left|z_{j}\right| \geq \|\left. f\right|_{p} / H \\ 0 & \text { otherwise. }\end{array}\right.$ Then

$$
\begin{aligned}
\mathbb{E}\left(\sum_{j} Y_{j}\right) & =\sum_{j} \mathbb{P}\left[\left|z_{j}\right| \geq \frac{\|f\|_{p}}{H}\right\} \\
& =\sum_{j} \mathbb{P}\left[\frac{\left|f_{j}\right|^{p}}{u_{j}} \geq \frac{\|f\|_{p}^{p}}{H^{p}}\right\} \\
& =\sum_{j} \mathbb{P}\left[u_{j} \geq \frac{H^{p} \cdot\left|f_{j}\right|^{p}}{\|f\|_{p}^{p}}\right\} \\
& =\sum_{j}\left(1-e^{\left.-\frac{H^{p} \cdot\left|f_{j}\right|^{p}}{\|\mid f\|_{p}^{\mid}}\right\}}\right) \quad \text { since } u_{j} \sim \operatorname{Exp}(1) \\
& \left.\leq \sum_{j} \frac{H^{p} \cdot\left|f_{j}\right|{ }^{p}}{\|f\|_{p}^{p}}\right\} \quad \text { since } e^{-x} \geq 1-x \\
& =H^{p}
\end{aligned}
$$

Therefore, by Markov's inequality

$$
\mathbb{P}\left[\#\left\{j:\left|z_{j}\right| \geq \frac{\left.|f|\right|_{p}}{H}\right\} \geq 100 H^{p}\right] \leq 1 / 100
$$

We choose $H=c \log _{2} M$ for some constant $c>0$ and let $K=100 H^{p}$.
Fix $u=\left(u_{1}, \ldots, u_{M}\right)$ which fixes z. Call j heavy if $\left|z_{j}\right|>\|f\|_{p} / H$ and let $L \subseteq[M]$ be the set of light (non-heavy elements in $[M]$.

Now for $p>2, k=c M^{1-2 / p} \log _{2} M$ is $M^{\Omega(1)}$ and so is larger than the $50 K^{2}$ for sufficiently large M, so the probability that any two of the heavy elements collide under h is at most $1 / 100$.

In order to show that $\|y\|_{\infty}$ approximates $\|z\|_{\infty}$ well, all we need to show is that the contribution of the light elements won't affect the contribution of any heavy j element of z_{j} by too much.

Let $a \in[k]$. Then $\mathbb{E}_{g}\left(\sum_{j \in L, h(j)=a} g(j) z_{j}\right)=\sum_{j \in L, h(j)=a} \mathbb{E}_{g}(g(j)) z_{j}=0$ for each fixed h.

Therefore

$$
\begin{aligned}
\operatorname{Var}_{g}, h\left(\sum_{j \in L, h(j)=a} g(j) z_{j}\right) & =\mathbb{E}_{g}, h\left(\left(\sum_{j \in L, h(j)=a} g(j) z_{j}\right)^{2}\right) \\
& =\mathbb{E}_{g}, h\left(\sum_{i \in L, h(j)=a} \sum_{j \in L, h(j)=a} g(i) g(j) z_{i} z_{j}\right) \\
& =\mathbb{E}_{h}\left(\sum_{i \in L, h(j)=a} \sum_{j \in L, h(j)=a} \mathbb{E}_{g}(g(i) g(j)) z_{i} z_{j}\right) \\
& =\mathbb{E}_{h}\left(\sum_{j \in L, h(j)=a} z_{j}^{2}\right) \quad \text { by pairwise independence } \\
& \leq \mathbb{E}_{h}\left(\sum_{h(j)=a} z_{j}^{2}\right) \\
& =\frac{\sum_{j} z_{j}^{2}}{k} \\
& =\|z\|_{2}^{2} / k .
\end{aligned}
$$

Now in order to understand the variance of the contribution of the light elements overall, we let u vary.

$$
\begin{aligned}
\mathbb{E}_{u}\left(\|z\|_{2}^{2}\right) & =\sum_{j} \mathbb{E}\left(\frac{f_{j}^{2}}{u_{j}^{2 / p}}\right) \\
& =\sum_{j} f_{j}^{2} \mathbb{E}\left(\frac{1}{u_{j}^{2 / p}}\right) \\
& \leq c^{\prime}\|f\|_{2}^{2}
\end{aligned}
$$

for some constant $c^{\prime}=\int_{0}^{\infty} e^{-\lambda} / \lambda^{2 / p} \mathrm{~d} \lambda$ since $u_{j} \sim \operatorname{Exp}(1)$.
Now $\|z\|_{\infty}$ is roughly $\|f\|_{p}$ so we need the variance to be small relative to $\|f\|_{p}^{2}$ rather than $\|f\|_{2}^{2}$. Therefore k needs to be small enough to reduce $\|f\|_{2}^{2}$ sufficiently to achieve this. To relate these two we use Hölder's Inequality.

Proposition 0.1 (Hölder's Inequality). For arbitrary vectors u and $v,\langle u, v\rangle \leq\|u\|_{p} \cdot\|v\|_{q}$ for $\frac{1}{p}+\frac{1}{q}=1$.

We apply Hölder's inequality to the vectors $\left(f_{1}^{2}, \ldots, f_{M}^{2}\right)$ and $(1, \ldots, 1)$ and $p^{\prime}=p / 2, q^{\prime}=1 /(1-$
$\left.1 / p^{\prime}\right)=1 /(1-2 / p)$: Then

$$
\begin{aligned}
\|f\|_{2}^{2} & =\sum_{j} f_{j}^{2} \cdot 1 \\
& =\left(\sum_{j}\left(f_{j}^{2}\right)^{p / 2}\right)^{2 / p}\left(\sum_{j} 1^{1 /(1-2 / p)}\right)^{1-2 / p} \\
& =\left(\sum_{j} f_{j}^{p}\right)^{2 / p} M^{1-2 / p} \\
& =\left\|f_{j}\right\|_{p}^{2} \cdot M^{1-2 / p}
\end{aligned}
$$

Therefore the variance of the contribution of the light elements is $\leq \frac{c^{\prime}\|f\|_{p}^{2} M^{1-2 / p}}{k}$. With our choice of k, we get variance for each single bucket $a \in[k]$ at $\operatorname{most} \frac{\varepsilon\|f\|_{p}^{2}}{\log _{2} M}$.

Now, because the expectation for a bucket is 0 , and it is given by a sum of independent random variables with total variance is at most $\frac{\varepsilon\|f\|_{p}^{2}}{\log _{2} M}$, we can apply a variant of Chernoff bounds which says that the probability that such a random variable is at least K standard deviations aboves its mean decays exponentially in K^{2} to show that the probability that a single bucket has a contribution at least $\|f\|_{p} / 10$ from light elements is at most $1 /(100 M)$ for ε sufficiently small. By a union bound, except with probability $1 / 100$, every bucket has a contribution at most $\|f\|_{p} / 10$ from light elements. Together with the fact that the heavy elements are hashed to distinct bins except with probability $1 / 100$ we get that $\|y\|_{\infty}$ is between $\|f\|_{p} / 3$ and $3\|f\|_{p}$ except with probability $1 / 3$.

Finally, we run $O(\log (1 / \delta))$ independent copies of the protocol and take the median of the answers to derive a constant factor approximation with probability at least $1-\delta$.

