CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 9: Approximating F, (or || f||,) for p > 2
April 28,2014

Lecturer: Paul Beame Scribe: Paul Beame

We continue the analysis of Andoni’s algorithm, which uses the exponential distribution Exp(1)
given by P[z > t] = e* for t > 0 and rescales each f; using the an independent exponential
distribution to get z; so that with good probability ||z|| is a constant factor approximation to
|f|l,- The algorithm runs a variant of the Count sketch on z in order to approximate ||z||s.
Though the Count sketch does not yield constant factor approximations in general, z is sufficiently
skewed that this variant does work well.

More precisely, for each j, define z; = f;/ u;/ ” where u; ~ Exp(1) are chosen independently.

The vector z will be part of our analysis but does not directly appear in the description of the
algorithm as a streaming algorithm.

Max-stable algorithm for || f||, approximation:

1: Initialize:

2 k« [M'2/Plog, M

3: y < length £ vector of real numbers

4: Use Nisan generator to approximate the following random choices:
5: Choose uy, ..., uy ~ Exzp(1l) independently.

6: Choose h : [M] — [k] uniformly at random.

7: Choose ¢ : [M] — {—1, 1} uniformly at random.
8: Process:

9: for each i do

10: Yn(zi) < Yh(z) TG g(xz)/uﬂlc{p

11: end for

12: Output: ||y||eo = max{y, : a € [k]}.

We will show that the above algorithm produces a factor 4 approximation, say, for || f||, with
probability bounded above 1/2 and hence using the usual median, running O(log(1/d)) copies in
parallel yields a factor 4 approximation with probability at least 1 — .



This algorithm corresponds to a sketch matrix of the following form:

0 0 -1/ 0 0 0 0 0
0 +1/u" 0 0 0 —1/uyf 0 0
0 0 0 1w 0 0 0 0
+1/ul® 0 0 0 0 0 0 —1/u)l?
0 0 0 0 +1/u? 0 0 0
|0 0 0 0 0 0 —1uyty 0
which is the product of
"0 0 -1 0 0 0 0 -1 -1 0 0 0]
0 41 0 0 0 0 +1 0 0 -1 0 0
p,_| 0 0 0 -1 0 0 0 0 0 0 0 0
9 41 0 0 0 0 -1 0 O 0 0 0 -1
0 0 0 0 41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 |
and
[ 1/ui/p |
1/ué/p
1/u£1)’/17
1/“411/17
D, = 1/ug’”
1/“?\?—2
1/”%\//1111

The vector 2 = Py, - fandy = D, P, f.
Last time we proved
Claim 1: P['Jl2 < ||2[|c < 2I|f]],] > 3/4.

In order to prove that ||y||~ is a good estimate for ||z||o, We need to show that z is sufficiently
skewed.

Claim 2: For any H, E[#{j : || > Ly < gr.




L if |z > || fll,/H
0 otherwise.
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Proof. LetY; = { Then

= 2
N #1
]
Therefore, by Markov’s inequality
P#{j : |z] > @”} > 100H?] < 1/100.

We choose H = clog, M for some constant ¢ > 0 and let X' = 100HP.

Fix v = (u1, ..., up) which fixes z. Call j heavy if |z;| > || f||,/H and let L C [M] be the set of
light (non-heavy elements in [M].

Now for p > 2, k = cM'~2/Plog, M is M) and so is larger than the 502 for sufficiently large
M, so the probability that any two of the heavy elements collide under A is at most 1/100.

In order to show that ||y||~ approximates ||z|| well, all we need to show is that the contribution
of the light elements won’t affect the contribution of any heavy j element of z; by too much.

Let a € [k]. Then Eq(3 e/ 11=a 90)2) = 2jer n(j)=a Eg(9(4))z; = 0 for each fixed h.



Therefore

Varg, h( Z 9(7)z;) = Eg h(( Z 9(j>zj)2)

JEL, h(j)=a JeL, h(j)=a

= (> > g(i)g(j)zz-zy')

zGL h(j)=a jEL, h(j)=
= Ei( > > Eg(g(i)g(J))ZiZj)
i€L, h(j)=a jeL, h(j)=a

= Eu( Z 2?) by pairwise independence

J
JEL, h(j)=a

< En( D, &)

h(j)=a
2 2

k
= |lz|l3/.

Now in order to understand the variance of the contribution of the light elements overall, we let u
vary.

k8 = TR 2/,,
- Zf2 2/p

< C||f||2

for some constant ¢ = [ e~ /A*?d]\ since u; ~ Exp(1).

Now ||| is roughly || f]|, so we need the variance to be small relative to || f||2 rather than || f||3.
Therefore k needs to be small enough to reduce || f]|3 sufficiently to achieve this. To relate these
two we use Holder’s Inequality.

Proposition 0.1 (Holder’s Inequality). For arbitrary vectors u and v, (u,v) < ||u||, - ||v||, for
1,1

1yl

p q

We apply Holder’s inequality to the vectors (f7,..., f3,)and (1,...,1)andp = p/2,¢ = 1/(1—



1/p) =1/(1 —2/p): Then

1B = Y
— (Z(fQ)pﬂ 2/17 211/1 2/p))1 2/p
— pr 2/p M- 2/p

= ||fj||§)-M1 e

IIfIZM -2/
k

Therefore the variance of the contribution of the light elements is < . With our choice

ellf113
logg M *

of k, we get variance for each single bucket a € [k] at most

Now, because the expectation for a bucket is 0, and it is given by a sum of independent random

variables with total variance is at most ; Hfl ]‘\1’4 , we can apply a variant of Chernoff bounds which says

that the probability that such a random variable is at least K standard deviations aboves its mean
decays exponentially in K? to show that the probability that a single bucket has a contribution
at least || f||,/10 from light elements is at most 1/(100M) for ¢ sufficiently small. By a union
bound, except with probability 1/100, every bucket has a contribution at most || f||,/10 from light
elements. Together with the fact that the heavy elements are hashed to distinct bins except with
probability 1/100 we get that ||y|| is between || f||,/3 and 3||f||, except with probability 1/3.

Finally, we run O(log(1/d)) independent copies of the protocol and take the median of the answers
to derive a constant factor approximation with probability at least 1 — .



