CSE 522: Sublinear (and Streaming) Algorithms

Spring 2014

Lecture 9: Approximating F_p (or $||f||_p$) for p > 2

April 28, 2014

Lecturer: Paul Beame

Scribe: Paul Beame

We continue the analysis of Andoni's algorithm, which uses the exponential distribution Exp(1) given by $P[x > t] = e^{-t}$ for $t \ge 0$ and rescales each f_j using the an independent exponential distribution to get z_j so that with good probability $||z||_{\infty}$ is a constant factor approximation to $||f||_p$. The algorithm runs a variant of the Count sketch on z in order to approximate $||z||_{\infty}$. Though the Count sketch does not yield constant factor approximations in general, z is sufficiently skewed that this variant does work well.

More precisely, for each j, define $z_j = f_j / u_j^{1/p}$ where $u_j \sim Exp(1)$ are chosen independently.

The vector z will be part of our analysis but does not directly appear in the description of the algorithm as a streaming algorithm.

Max-stable algorithm for $||f||_p$ approximation:

- 1: Initialize:
- 2: $\overline{k \leftarrow \lceil M^{1-2/p} \log_2 M \rceil}$
- 3: $y \leftarrow \text{length } k \text{ vector of real numbers}$
- 4: Use Nisan generator to approximate the following random choices:

5: Choose $u_1, \ldots, u_M \sim Exp(1)$ independently.

- 6: Choose $h: [M] \to [k]$ uniformly at random.
- 7: Choose $g: [M] \to \{-1, 1\}$ uniformly at random.
- 8: Process:
- 9: **for** each *i* **do**
- 10: $y_{h(x_i)} \leftarrow y_{h(x_i)} + c_i \cdot g(x_i) / u_{x_i}^{1/p}$
- 11: **end for**
- 12: Output: $||y||_{\infty} = \max\{y_x : a \in [k]\}.$

We will show that the above algorithm produces a factor 4 approximation, say, for $||f||_p$ with probability bounded above 1/2 and hence using the usual median, running $O(\log(1/\delta))$ copies in parallel yields a factor 4 approximation with probability at least $1 - \delta$.

This algorithm corresponds to a sketch matrix of the following form:

$$\begin{bmatrix} 0 & 0 & -1/u_3^{1/p} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & +1/u_2^{1/p} & 0 & 0 & 0 & \cdots & -1/u_{M-2}^{1/p} & 0 & 0 \\ 0 & 0 & 0 & -1/u_4^{1/p} & 0 & \cdots & 0 & 0 & 0 \\ +1/u_1^{1/p} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1/u_M^{1/p} \\ 0 & 0 & 0 & 0 & +1/u_5^{1/p} & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1/u_{M-1}^{1/p} & 0 \end{bmatrix}$$

which is the product of

and

The vector $z = P_{g,h} \cdot f$ and $y = D_u P_u f$.

Last time we proved

Claim 1: $\mathbb{P}[\frac{||f||_p}{2} \le ||z||_{\infty} \le 2||f||_p] > 3/4.$

In order to prove that $||y||_{\infty}$ is a good estimate for $||z||_{\infty}$ we need to show that z is sufficiently skewed.

Claim 2: For any H, $\mathbb{E}[\#\{j : |z_j| \ge \frac{|f||_p}{H}\}] \le H^p$.

Proof. Let
$$Y_j = \begin{cases} 1 & \text{if } |z_j| \ge ||f||_p/H \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}(\sum_j Y_j) = \sum_j \mathbb{P}[|z_j| \ge \frac{||f||_p}{H}]$$

$$= \sum_j \mathbb{P}[\frac{|f_j|^p}{u_j} \ge \frac{||f||_p}{H^p}]$$

$$= \sum_j \mathbb{P}[u_j \ge \frac{H^p \cdot |f_j|^p}{||f||_p^p}]$$

$$= \sum_j (1 - e^{-\frac{H^p \cdot |f_j|^p}{||f||_p^p}}) \quad \text{since } u_j \sim Exp(1)$$

$$\le \sum_j \frac{H^p \cdot |f_j|^p}{||f||_p^p} \quad \text{since } e^{-x} \ge 1 - x$$

$$= H^p$$

Therefore, by Markov's inequality

$$\mathbb{P}[\#\{j : |z_j| \ge \frac{|f||_p}{H}\} \ge 100H^p] \le 1/100.$$

We choose $H = c \log_2 M$ for some constant c > 0 and let $K = 100H^p$.

Fix $u = (u_1, \ldots, u_M)$ which fixes z. Call j heavy if $|z_j| > ||f||_p/H$ and let $L \subseteq [M]$ be the set of light (non-heavy elements in [M].

Now for p > 2, $k = cM^{1-2/p} \log_2 M$ is $M^{\Omega(1)}$ and so is larger than the $50K^2$ for sufficiently large M, so the probability that any two of the heavy elements collide under h is at most 1/100.

In order to show that $||y||_{\infty}$ approximates $||z||_{\infty}$ well, all we need to show is that the contribution of the light elements won't affect the contribution of any heavy j element of z_j by too much.

Let
$$a \in [k]$$
. Then $\mathbb{E}_g(\sum_{j \in L, h(j)=a} g(j)z_j) = \sum_{j \in L, h(j)=a} \mathbb{E}_g(g(j))z_j = 0$ for each fixed h .

Therefore

$$\begin{aligned} \operatorname{Var}_{g}, h(\sum_{j \in L, \ h(j)=a} g(j)z_{j}) &= \mathbb{E}_{g}, h((\sum_{j \in L, \ h(j)=a} g(j)z_{j})^{2}) \\ &= \mathbb{E}_{g}, h(\sum_{i \in L, \ h(j)=a} \sum_{j \in L, \ h(j)=a} g(i)g(j)z_{i}z_{j}) \\ &= \mathbb{E}_{h}(\sum_{i \in L, \ h(j)=a} \sum_{j \in L, \ h(j)=a} \mathbb{E}_{g}(g(i)g(j))z_{i}z_{j}) \\ &= \mathbb{E}_{h}(\sum_{j \in L, \ h(j)=a} z_{j}^{2}) \quad \text{by pairwise independence} \\ &\leq \mathbb{E}_{h}(\sum_{\substack{h(j)=a}} z_{j}^{2}) \\ &= \frac{\sum_{j} z_{j}^{2}}{k} \\ &= ||z||_{2}^{2}/k. \end{aligned}$$

Now in order to understand the variance of the contribution of the light elements overall, we let u vary.

$$\mathbb{E}_{u}(||z||_{2}^{2}) = \sum_{j} \mathbb{E}(\frac{f_{j}^{2}}{u_{j}^{2/p}})$$
$$= \sum_{j} f_{j}^{2} \mathbb{E}(\frac{1}{u_{j}^{2/p}})$$
$$\leq c' ||f||_{2}^{2}$$

for some constant $c' = \int_0^\infty e^{-\lambda} / \lambda^{2/p} d\lambda$ since $u_j \sim Exp(1)$.

Now $||z||_{\infty}$ is roughly $||f||_p$ so we need the variance to be small relative to $||f||_p^2$ rather than $||f||_2^2$. Therefore k needs to be small enough to reduce $||f||_2^2$ sufficiently to achieve this. To relate these two we use Hölder's Inequality.

Proposition 0.1 (Hölder's Inequality). For arbitrary vectors u and v, $\langle u, v \rangle \leq ||u||_p \cdot ||v||_q$ for $\frac{1}{p} + \frac{1}{q} = 1$.

We apply Hölder's inequality to the vectors (f_1^2, \ldots, f_M^2) and $(1, \ldots, 1)$ and p' = p/2, q' = 1/(1 - p/2)

1/p') = 1/(1 - 2/p): Then

$$\begin{split} ||f||_{2}^{2} &= \sum_{j} f_{j}^{2} \cdot 1 \\ &= (\sum_{j} (f_{j}^{2})^{p/2})^{2/p} (\sum_{j} 1^{1/(1-2/p)})^{1-2/p} \\ &= (\sum_{j} f_{j}^{p})^{2/p} M^{1-2/p} \\ &= ||f_{j}||_{p}^{2} \cdot M^{1-2/p}. \end{split}$$

Therefore the variance of the contribution of the light elements is $\leq \frac{c'||f||_p^2 M^{1-2/p}}{k}$. With our choice of k, we get variance for each single bucket $a \in [k]$ at most $\frac{\varepsilon ||f||_p^2}{\log_2 M}$.

Now, because the expectation for a bucket is 0, and it is given by a sum of independent random variables with total variance is at most $\frac{\varepsilon ||f||_p^2}{\log_2 M}$, we can apply a variant of Chernoff bounds which says that the probability that such a random variable is at least K standard deviations aboves its mean decays exponentially in K^2 to show that the probability that a single bucket has a contribution at least $||f||_p/10$ from light elements is at most 1/(100M) for ε sufficiently small. By a union bound, except with probability 1/100, every bucket has a contribution at most $||f||_p/10$ from light elements. Together with the fact that the heavy elements are hashed to distinct bins except with probability 1/100 we get that $||y||_{\infty}$ is between $||f||_p/3$ and $3||f||_p$ except with probability 1/3.

Finally, we run $O(\log(1/\delta))$ independent copies of the protocol and take the median of the answers to derive a constant factor approximation with probability at least $1 - \delta$.