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1 Pseudorandomness and Sketching

Thus far we have been considered linear sketching algorithms for data streams where the sketch
is given by an S ×M random matrix A where S is small and at most the space bound and M is
huge. So far, as in the Count-Min, Count, and Tug-of-War sketches, the matrix A has been defined
implicitly using pairwise or 4-wise independence using a very small number of random bits that
contribute only a small amount to the space bound. If we required truly M -wise independent
random entries in A then it would cost too much to store them during the algorithm.

Today we will discuss a general method that will allow us to design algorithms assuming such
independence and then show how to modify them to work using many fewer random bits, indeed
few enough that we can store them all.

The key properties that we will use are

• Computing A · f requires storing very few bits that depend on the input. That is, except for
the random bits, the algorithm uses very little space.

• The function A · f is independent of the order of the input stream.

Write the matrix A = (aij)ij . The i-th element of A · f is
∑m

j=1 aijfj . Because the number of rows
is small we focus on a single row of A · f , dropping the index i. That is we focus on computing

a1 · f1 + · · ·+ aM · fM

where aj = Fj(rj) ∈ [−B,B] for some integerB, each rj is a uniformly and independently chosen
element of {0, 1}K for some integer K = O(logB) and each Fj is some fixed, easy-to-compute
function.

This row of A would take KM random bits to specify but we will see how to get nearly the same
results using many fewer random bits.
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PSeudorandom generators for small space

We will think about a finite state machine with a small number of states that tests potential random
strings as inputs. A space S finite state machine has a state set Q of size 2S . It has a state transition
function given by a 2S × 2S matrix T that depends on its input string r, which we think of as
partitioned into blocks of K = O(S) bits each that determine the entries of T . The finite state
machine will also have a subset P ⊂ Q of accepting states.

For states p, q ∈ Q and Tp,q(r) will determine whether the machine moves from state q to state p
and will depend on precisely one block of r. We assume without loss of generality that the time
step t is encoded in each state so that if the time step in state q is t, then the t-th block of r will
determine the value of Tp,q(r).

Let Q(t)(r) be the random variable denoting the state Q after t steps using randomness r starting
in the initial state, Q(0). It is easy to check that Q(t)(r) = T (r)tQ(0).

We note that our usual space-bounded randomized algorithms have two inputs, a non-random input
x and a randomly chosen string r, whereas the space-bounded does not have an x input. However,
the above model also can encode the x input: For t ∈ [n], the input xt is hard-coded in the function
that determines the transitions from states q with time t − 1 to time t. Therefore, each fixed input
string corresponds to a separate finite state machine.

The above finite state machines are called space S statistical tests.

Definition 1.1. A function G : {0, 1}L → {0, 1}R ε-fools statistical test A on R-bit strings iff

|Pr∈R{0,1}R [A(r) accepts]− |Ps∈R{0,1}L [A(G(s)) accepts]| < ε.

s is called the seed for G.

G is called a pseudorandom generator if L < R and G ε-fools a class of statistical tests for
sufficiently small ε.

Nisan’s Generator Nisan developed a pseudorandom generator for space-bounded machines
whose properties are given by the following theorem.

Theorem 1.2 (Nisan 92). There is a constant c > 0 such that the following holds. For L ≤
2S log2R + S there is a mapping G : {0, 1}L → {0, 1}SR computable using log2R arithmetic
operations on S-bit integers such that for every space S statistical test,

|Pr∈R{0,1}SR [Q(R)(r) is accepting]− |Ps∈R{0,1}L [Q(R)(G(s)) is accepting]| < 2−cS.

That is, the function G 2−cS-fools all space S statistical tests runining in time R.
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The construction of G takes log2R hash functions h1, . . . , hlog2R chosen independently from a
family H of pairwise independent hash functions from {0, 1}S to {0, 1}S as well as a single input
x ∈ {0, 1}S .

The output of the generator G is computed using a tree with x at its root. Each node at level i has
two children: the left child is labeled by the same string as its parent, the right child is labeled by
the string obtained by applying the hash function hi to its parent string. The output string is the
left-to-right concatenation of all the strings of the leaves at level log2R, which is of length SR.
For example, at level 3 the string would be

x h3(x) h2(x) h3(h2(x)) h1(x) h3(h1(x)) h2(h1(x)) h3(h2(h1(x))).

Though we will not have time to go through the proof of this theorem, the basic idea of the argu-
ment is based on the repeated structure of pairs x h(x) in the tree. We can imagine the set A of
random strings that take a machine from one state p to q and another set B of random strings that
take a machine from state q to state r.

Definition 1.3. We say that h : {0, 1}S → {0, 1}S is (ε, A,B)-good iff∣∣∣∣Px∈R{0,1}S [x ∈ A and h(x) ∈ B]− |A||B|
22s

∣∣∣∣ ≤ ε.

Thus h is (ε, A,B)-good if and only if the pair (x, h(x)) is within ε of behaving like a truly random
string with respect to the set A×B. The key property of pairwise independent hash functions that
is used in the proof for the Nisan generator is the following:

Lemma 1.4 (Hash Mixing Lemma). Let h : {0, 1}S → {0, 1}S be a chosen from a pairwise
independent hash function family H and A,B ⊆ {0, 1}S . Then

Ph∼H [h is not (ε, A,B)− good] ≤ ε

for ε ≤ 2−S/3.

Applying the Nisan generator to sketching As we have defined things so far, the algorithm
makes independent choices and uses each for only one time step. However, in the case of sketching
we want to use aj repeatedly whenever there is a j in the input, so these are clearly not independent
and would need to be stored for later, which would be too large. However, there is an easy obser-
vation for this also. Because the output is independent of the order of the inputs, it would have the
same output behavior on a sorted version of the input, j1, . . . , j1, j2, . . . , j2, . . . , j`, . . . , j` where
the inputs are in increasing order. In this case the algorithm only needs to store the current index
of the input and it is clear that the is a segment that depends on rj1 , followed by one depending on
rj2 etc. Therefore we apply the Nisan generator with R = M and recompute the entry j as needed
when xi = j.
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The original application of Nisan’s generator to sketching was due to Indyk, who showed how to
estimate Fp (or equivalently ||f ||p) for 0 ≤ p ≤ 2. The idea was to use a p-stable distribution:
A random variable X is p-stable iff for any vector z and Xj ∼ X ,

∑M
j=1 zjXj ∼ ||z||pX . For

example, the Gaussian distribution is a p-stable distribution for p = 2. We will instead consider a
slightly different problem.

A constant-factor approximation for Fp (or ||f ||p) for p > 2 The original Alon, Matias, and
Szegedy paper was the first to give an approximation algorithm for estimating Fp using space
M1−1/p logO(1)M . They also showed a space lower bound of M1−4/p. This was improved by
Indyk and Woodruff in 2005 [] to M1−2/p logO(1)M which is tight up to log factors. This was
later sharpened by Andoni, Krauthgammer, and Onak in 2010 [] to yield a simpler algorithm with
a better log factor. The algorithm we describe is in a manuscript due to Andoni in 2012 and uses
the above ideas together with some from a paper by Jowhari, Saglam, and Tardos for sampling
elements approximately proportional to their contribution to the `p mass of their frequencies for
p ∈ [1, 2].

Though no p-stable distributions exist for p > 2, the general idea of the argument is to use a
distribution that has a property similar to stability with respect to taking the maximum.

The exponential distribution Exp(1) is given by

P[x > t] = e−t for t ≥ 0.

One can check that it is indeed a distribution by noting that
∫∞

0
e−tdt = −e−t|∞0 = −(0− 1) = 1.

The General Idea The general idea of the algorithm will be to rescale each fj using the expo-
nential distribution to get zj so that with good probability ||z||∞ is a constant factor approximation
to ||f ||p. The algorithm will run a variant of the Count sketch on z in order to approximate ||z||∞.
Though the Count sketch does not yield constant factor approximations in general, z will have
sufficient structure that we will be able to argue that this variant does work well. Though the space
won’t be too large, the entire algorithm as described so far would use a huge number of random
bits, but we will apply the Nisan generator to the result.

More precisely, for each j, let zj = fj/u
1/p
j where uj ∼ Exp(1) are chosen independently.

Claim 1: P[ ||f ||p
2
≤ ||z||∞ ≤ 2||f ||p] > 3/4.

Proof. Let q = 1/|z||p∞. Then

q =
1

maxj{|fj|p/uj}
= min{ u1

|fj|p
, . . .

uM
|fM |p

}.
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Let λ ≥ 0. Then

P[q > λ] = P[∀j ∈ [M ],
uj
|fj|p

> λ]

=
M∏
j=1

P[
uj
|fj|p

> λ] since the uj are independent

=
M∏
j=1

e−λ|fj |p

= e−λ
PM

j=1 |fj |p

= e−λ||fj ||pp

Therefore u = q||f ||pp ∼ Exp(1). It follows that

P[
||f ||p

2
≤ ||z||∞ ≤ 2||f ||p]

= P[
||f ||pp
2p
≤ ||z||p∞ ≤ 2p||f ||pp]

= P[
||f ||pp
2p
≤ 1

q
≤ 2p||f ||pp]

= P[
1

2p||f ||pp
≤ q ≤ 2p

||f ||pp
]

= P[
1

2p
≤ q||f ||pp ≤ 2p]

= P[
1

2p
≤ u ≤ 2p]

= e−1/2p − e−2p

> 3/4

since e−1/2p − e−2p ≥ e−1/4−4 = 0.76... for p > 2.

In the next class we will complete the description of the algorithm and its proof.

5


	Pseudorandomness and Sketching

