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1 Testing Uniformity of Distributions

We return today to property testing and a surprising application of F2 estimation (or equivalently
`2-norm approximation) for the problem of testing the closeness to uniform of a probability distri-
bution.

We consider discrete distributions on the domain [n]. Each such distribution is given by a proba-
bility vector

p = (p1, . . . , pn).

The uniform distribution U on [n] has Ui = 1/n for all i ∈ [n]. The property testing problem we
focus on first is to do the following:

• Accept if p is uniform

• Reject if p is ε-far from uniform.

This definition is ambiguous without a notion of distance between distributions.

The most natural notion of distance between distributions is the `1 distance between their proba-
bility vectors, where

||p− q||1 =
∑

i

|pi − qi| = 2 ·max A ⊂ [n]p(A)− q(A).

||p−1||1 is called the total variation distance between distributions, while max A ⊂ [n]p(A)−q(A)
is called the statistical distance. Another notion that we will consider is the `2 distance between
distributions,

||p− q||2 =

√∑
i

|pi − qi|.

While `1 distance is the most natural, it will turn out that analyzing the `2 distance will be the most
useful algorithmically.
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These can be closely related — if p = (1, 0, . . . , 0) then ||p− U ||1 = 2− 2/n and ||p− U ||2 ≈ 1
— but if p = (2/n, . . . , 2/n, 0, . . . , 0) and q = (0, . . . , 0, 2/n, . . . , 2/n) then ||p − q||1 = 2 but
||p − q||2 is only 2/

√
n. The latter is the largest gap possible. Observe that for any probability

distribution p on [n], 1/
√

n ≤ ||p||2 ≤ ||p||1 = 1 and

||p− q||2/n1/2 ≤ ||p− q||2 ≤ ||p− q||1 ≤ n1/2||p− q||2.

Naive algorithm for `1 distance from uniformity:
Choose s samples and compute the sample distribution p̃ as an approximation to p.
Compute ||U − p̃||1 to estimate ||p− U ||1.

The problem with this approach is that ||p−p̃||1 is huge unless s = Ω(n). (Otherwise, the algorithm
is trying to estimate n different quantities with o(n) samples. In this case, every p̃ would be distance
1− o(1) from uniform.)

Alternative idea: Use an algorithm for property testing with respect to `2 distance to derive an
algorithm for property testing with respect to `2 distance.

The reason for the utility of the `2 distance is closely related to the connection of F2 to the sizes of
self-joins. Observe that the collision probability for independent samples from p,

Pa,b∼p[a = b] =
n∑

i=1

p2
i = ||p||22.

Also Pa,b∼U [a = b] = 1/n. Then the square of the `2 distance,

||p− U ||22 =
n∑

i=1

(pi −
1

n
)2

=
n∑

i=1

(p2
i − 2

pi

n
+

1

n2
)

=
n∑

i=1

p2
i − 2

∑n
i=1 pi

n
+

n

n2
)

= ||p||22 −
2

n
+

1

n
)

= ||p||22 −
1

n
,

or equivalently ||p||22 =
1

n
+ ||p− U ||22.

This suggests sampling to get a good estimate of the collision probability, ||p||22. What error will
we need?
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`2 distance: If ||p− U ||2 > ε then

||p||22 = 1/n + ||p− U ||22 > 1/n + ε2.

On the other hand ||U ||22 = 1/n. In order to separate p from U , we would need to separate 1/n
from something > 1/n + ε2, even with error. It suffices to have an additive error in computing
||p||22 of at most ε2/2.

`1 distance: If ||p− U ||1 > ε then ||p− U ||2 > ε/
√

n so ||p− U |22 > ε2/n. Therefore,

||p||22 = 1/n + ||p− U ||22 > 1/n + ε2/n = 1/n(1 + ε2).

In this case we need to distinguish 1/n from something larger than 1/n (1 + ε2). It is natural
to consider multiplicative error in this case. With multiplicative error 1 ± ε2/3 observe that if
||p− U ||11 > ε then ||p||22 would evaluate to strictly more than

1/n (1 + ε2)(1− ε2/3) = 1/n(1 + 2ε2/3− ε4/3) ≥ 1/n(1 + ε2/3)

which is the largest that the value could be if p = U .

Property testing algorithm for uniformity:
Choose s independent samples x1, . . . , xs from p.

Let Yij =

{
1 if xi = xj

0 otherwise.
Output X =

∑
i<j Yij/

(
s
2

)
.

Analysis By definition,
E(Yij = ||p||22.

Therefore, since X is the average of the Yij ,

E(X) = ||p||22

and so X is an unbiased estimator for ||p||22.

V ar(

(
s

2

)
X) = V ar(

∑
i<j

Yij)

= E([
∑
i<j

Yij − E(
∑
i<j

Yij)]
2)

= E([
∑
i<j

Yij − E(Yij)]
2).
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We write Ŷij = Yij − E(Yij) = Yij − ||p||22 and note that E(Ŷij) = 0. Then

V ar(

(
s

2

)
X) = E([

∑
i<j

Ŷij]
2)

= E(
∑
i<j

Ŷij

∑
k<`

Ŷk`)

= E(
∑
i<j

∑
k<`

ŶijŶk`)

=
∑
i<j

E(Ŷ 2
ij) +

∑
i<j
k<`

|{i,j,k,`}|=3

E(ŶijŶk`)) +
∑
i<j
k<`

|{i,j,k,`}|=4

E(ŶijŶk`).

Now if i, j, k, ` are all distinct, the random variables Ŷij and |Ŷk` are independent so E(ŶijŶk`) =

E(Ŷij) · E(Ŷk`) = 0 · 0 = 0 and hence the third term in the sum is 0.

More generally, for any i < j and k < `,

E(ŶijŶk`) = E((Yij − ||p||22)(Yk` − ||p||22))

= E(YijYk` − ||p||22(E(Yij + E(Yk`) + ||p||42
= E(YijYk` − 2||p||42 + ||p||42
= E(YijYk` − ||p||42
< E(YijYk`).

In particular, E(Ŷ 2
ij) ≤ E(Y 2

ij) = E(Yij) = ||p||22 since Yij is an indicator variable. Therefore the
first term in the sum is

(
s
2

)
||p||22.

Also, for every i < j and k < ` such that |{i, j, k, `}| = 3, the event Yi,jYk,` is the event that all
the samples indexed by them produce the same value. For any three samples, this probability is
precisely

∑n
i=1 p3

i = ||p||33. For each of the
(

s
3

)
choices of three samples, there are 6 ways that this

can correspond to i < j and k < `: if i = ` or k = j then there is only one way to extend this to
three samples, if either i = k or j = ` there are a further two ways to order the remaining indices.

Putting this together, we have

V ar(
∑
i<j

Yij) ≤
(

s

2

)
||p||22 + 6

(
s

3

)
||p||33.
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Therefore,

V ar(X) = V ar(
∑
i<j

Yij)/

(
s

2

)2

≤
(

s
2

)
||p||22 + 6

(
s
3

)
||p||33(

s
2

)2

=
2||p||22

s(s− 1)
+

4(s− 2)||p||33
s(s− 1)

<
2||p||22

s(s− 1)
+

4||p||33
s

.

`2 testing quality approximation for ||p||2: This requires an ε2/2 additive approximation. Ob-
serve that ||p||22, ||p||33 ≤ 1 so V ar(X) ≤ 1/binoms2 + 4/s < 5/s for s ≥ 5. Therefore, by
Chebyshev’s inequality,

P[|X − ||p||22| ≥ ε2/2] ≤ V ar(X)

ε2/2)2
≤ 1/3,

for s = O(ε−2), in particular s = 60/ε2. Therefore, for constant ε, only a constant number of
samples are required to test the proximity p to uniform distribution using the `2 error measure.

`1 testing quality approximation for ||p||2: This requires a 1± ε2/3 multiplicative approxima-
tion. For convenience, write ε0 = ε2/3. Again via Chebyshev’s inequality,

P[|X − ||p||22| ≥ ε||p||22] ≤ V ar(X)

ε2||p||42

≤ 1

ε2||p||42

[
2||p||22

s(s− 1)
+

4||p||33
s

]
=

2

s(s− 1)ε2
0||p||22

+
4||p||33

ε2
0s||p||42

Since ||p||22 ≥ 1/n,
2

s(s− 1)ε2
0||p||22

≤ 1/6

for s ≥ 4
√

n/ε0. Since ||p||3 ≤ ||p||2, we have ||p||33/||p||42 ≥ 1/||p||2. Since ||p||2 ≥ 1/
√

n,

4||p||33
ε2

0s||p||42
≤ 4

ε2
0s||p||2

≤ 1/6

for s ≥ 24
√

n/ε2
0. Therefore, for s = d24

√
n/ε2

0e samples with probability at least 2/3, we obtain
a 1± ε0 factor approximation for ||p||22.
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In the application to testing uniformity with respect to `1 distance we have ε0 = ε2/3 and hence
O(ε−4

√
n) samples suffice.

(Note that the upper bound ||p||33/||p||42 ≤ 1/||p||2 ≤
√

n that we used is asymptotically optimal.
Consider a distribution which has probability pn = 1/

√
n, pi = 1/n for i ≤ n −

√
n and pi = 0

otherwise. This distribution has ||p||22 ≈ 2/n and ||p||33 ≈ 1/n3/2.)

Improvements and a Lower Bound The original `2 distance tester for uniformity is based on a
tester due to Goldreich and Ron []. The version here and extension to `1 distance is due to Batu et
al. []. Note that the 4-th power dependence on the inverse distance 1/ε is not optimal. The exact
power is a bit less of an issue in property testing because unlike the streaming case, the comparison
is with a polynomial in n rather than log n. An asymptotically optimal dependence of Θ(ε−2

√
n)

was shown by Paninski []. The basic idea similarly involves collisions but instead the algorithm
extimates the distance based on the number of distinct samples. This avoids the large variance one
can get if there are certain elements, such as in the example above where the probability of a triple
collision is too large.

A lower bound of Ω(
√

n) on the number of samples needed is not hard to show using a distribution
related to the hard instances for element distinctness testing. Consider the distribution p that has
probability 1/n for all elements larger than 2εn, but has probability 2/n for the first εn and the rest
0. This has ||p − U ||1 = 2ε, but is s = o(

√
n) then the algorithm will not see any collisions with

probability near 1.

Extensions One can extend this algorithm to one that tests the distance to any fixed known dis-
tribution q using the above algorithm for the uniform distribution: Group the elements into bins
based on their probabilities so that every element has the same probability up to a 1 + ε factor,
down to probabilities at most ε/(n log2 n) say. (Elements with smaller probability occur too rarely
in total probability to matter.) This gives O(logn / log(1 + ε)) = O(ε−1 log n) bins. The algorithm
will first apply the naive sampling algorithm to estimate the probability of each bin. Since there are
only the sizes of O(ε−1 log n) bins, Chernoff bounds imply that all sizes of the corresponding bins
for p can be estimated with small additive error using only ε−1 logO(1) n samples. If any of these is
too far from that of q, the algorithm will reject. Within each bin, the distribution is approximately
uniform and the above test can be applied, provided that the bin has sufficiently large probability
under q. Again, if the error on the bins is too large, the algorithm will reject.

If p and q are both given as input, then the sample complexity required is larger, ε−Θ(1)n2/3 but
part of the general idea is similar to that of the uniform case. Namely, one samples, elements
from both distributions and compares the collisions within the p samples and within the q samples
and compares this to the collisions between the p and q samples. The variance of this test is not
good if one of the distributions contains some elements that occur too frequently. However, by
first filtering out the high probability elements (those with probability Ω(n−2/3)) and checking that
those agree for the two distributions using the naive algorithm, Batu et al. derive the above bound.
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