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1 Approximating F2

We already defined F0 =
∑M

j=1 f
0
j , the number of distinct elements in the stream. More generally

we can define the k-th frequency moment

Fk =
M∑

j=1

fk
j = ||f ||kk.

F1 = ||f ||1 = n is trivial to compute exactly. Fk is an integral value for integer k, which is
convenient, but there is no particular reason to restrict this to integer values; we sometimes write
Fp for arbitrary non-negative p.

F2 is particularly interesting and useful to approximate. One reason that we might be interested is
in understanding the quality of the output of the COUNT Sketch approximation, where |f̃j − fj| ≤
ε||f−j||2 ≤ ε

√
F2. Since F1 is easy to compute exactly, the errors in the COUNT-MIN and Misra-

Gries estimates are easy to compute. The F2 approximation lets us get good estimates of the
(smaller) error for the COUNT Sketch also.

However, there is a more important reason to consider F2. If we have some relation R with and f
is the frequency vector for an attribute in R, then F2 =

∑M
j=1 f

2
j is precisely the size of R ./ R, the

join of R with itself on that attribute, which has an entry for each pair of entries in R. The methods
we describe here are also useful for estimating the join size |R ./ S| for two different relations R
and S, as you will show on the first problem set.

The algorithm and ideas we present here is the most remarkable algorithm from the remarkable pa-
per by Alon, Matias, and Szegedy [?], which gave algorithms and lower bounds for estimating all
frequency moments. This was generalized in work by Alon, Giobbons, Matias, and Szegedy [?].
The basic idea is now known as the “tug-of-war” and shows the value of a higher level of indepen-
dence.
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The Basic Tug-of-War
1: Initialize:
2: Choose h : [M ]→ {−1, 1} independently from a 4-universal family of hash functions
3: y ← 0
4: Process:
5: for each i do
6: y ← y + ci · h(xi)
7: end for
8: Output: y2

The total space of the sketch is O(logM + log n).

Analysis Let Y be the value of y at the end of the execution and let X = Y 2 be its output. Then

Y =
n∑

i=1

ci h(xi) =
M∑

j=1

fj h(j).

Therefore

E(Y 2) = E((
M∑

j=1

fj h(j))
2)

= E(
M∑
i=1

M∑
j=1

fi h(i) fj h(j))

= E(
M∑

j=1

f 2
j h(j)

2 +
∑
i 6=j

fi h(i) fj h(j))

=
M∑

j=1

f 2
j +

∑
i 6=j

fi fj E(h(i)h(j))

Now for i 6= j, E(h(i)h(j)) = E(h(i))E(h(j)) = 0 · 0 = 0 by pairwise independence of h.
Therefore

E(Y 2) =
M∑

j=1

fj h(j))
2) = F2

and hence X = Y 2 is an unbiased estimator of F2. Examining its variance we have

V ar(X) = V ar(Y 2) = E(Y 4)− E(Y 2)2 = E(Y 4)− F 2
2 .
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Calculating, we have

E(Y 4) = E((
M∑

j=1

fj h(j))
4)

= E(
M∑
i=1

M∑
j=1

M∑
k=1

M∑
`=1

fi fj fk f` h(i)h(j)h(k)h(`))

=
M∑
i=1

M∑
j=1

M∑
k=1

M∑
`=1

fi fj fk f` E(h(i)h(j)h(k)h(`))

Since h is 4-wise independent, if any of i, j, k, ` occurs only once among the 4 values then we have
E(h(i)h(j)h(k)h(`)) = 0 since the singleton term factors out and has expectation 0. Therefore the
only terms that contribute are when all 4 are equal and when they form 2 pair. There are 3 ways
that they can form 2 pair, depending on which of j, k, ` the value i is paired with. Moreover, in
these cases E(h(i)h(j)h(k)h(`)) = 1. Therefore

E(Y 4) =
M∑

j=1

f 4
j + 3 ·

∑
i 6=j

f 2
i f

2
j

=
M∑

j=1

f 4
j + 3(

M∑
i=1

M∑
j=1

f 2
i f

2
j −

M∑
j=1

f 4
j )

= F4 + 3(F 2
2 − F4)

= 3F 2
2 − 2F4.

Plugging this in we have
V ar(X) = 2F 2

2 − 2F4 ≤ 2F 2
2 .

Unlike the situation with previous approximations, at this point a direct application of Chebyshev’s
inequality does not give a good error bound for the estimate. Indeed it only yields

P[ |X − F2| ≥ c|F2| ] ≤
V ar(X)

c2E(X)2
≤ 2

c2

which is ≥ 1/2 unless c > 2. In particular it would give no lower bound at all on F2.

Median of Means Method To remedy this problem Alon, Matias, and Szegedy described the
median of means method. The basic idea is to first average the runs of some number of (pairwise)
independent copies of the estimate in order to reduce the variance enough to get a failure proba-
bility of at most 1/3 for a (1± ε) error estimate and then apply the median trick to the result. The
result is captured in the following lemma.
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Lemma 1.1. There is a constant c < 25 such that the following holds. Let X be an unbiased
estimator of a real-valued quantity Q. Let Xi,j for i ∈ [t] and j ∈ [k] be each distributed as
X such that the elements of Xi = (Xi,1, . . . , Xi,k) are pairwise independent for each i and the
X1, . . . , Xt are fully independent, where

t = dc log2(1/δ)]e and s = d3 V ar(X)

ε2E(X)2
e.

If Z = Median{ 1
k

∑k
j=1Xi,j | i ∈ [t]} then P[|Z −Q| ≥ εQ] ≤ δ.

(Note that though we state this in mixed form with pairwise independence as well as full indepen-
dence, it is simplest to apply the lemma with tk fully independent copies of X .)

Proof. For each i ∈ [t] let

Yi =
1

k

k∑
j=1

Xi,j.

Since each Xi,j is an unbiased estimator of Q, we have

E(Yi) = Q.

Since k Yi =
∑k

j=1Xi,j and the Xi,j are pairwise independent we have

V ar(k Yi) =
k∑

j=1

V ar(Xi,j) = k V ar(X).

But V ar(k Yi) = k2 V ar(Yi) so V ar(Yi) = V ar(X)/k. Now by Chebyshev’s inequality we have

P[|Yi −Q| ≥ εQ] = P[|Yi − E(Yi)| ≥ ε E(Yi)]

≤ V ar(Yi)

ε2 E(Yi)2

=
V ar(X)

ε2k E(Yi)2

≤ 1/3

by the choice of k. We can now apply the Median trick. Since 1/2 = (3/2) · (1/3), we can use

the Chernoff bound with δ = 1/2 to get a failure probability ≤ e−(
1
2)

2
( t

3/3 = e−t/36 ≤ δ for
t = 25 log2(1/δ).

In the case of the basic tug of war we have X = Y 2, E(X) = Q = F2, and V ar(X) ≤ 2F 2
2 =

2E(X)2, so we choose

k = d3 V ar(X)

ε2 E(X)2
e = d6/ε2e.
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The Tug-of-War Sketch
1: Initialize:
2: k ← d6/ε2e
3: t← dc log2(1/δ)e
4: Choose tk hash functions hs,j : [M ] → {−1, 1} independently from a 4-universal family of

hash functions for s ∈ [t], and j ∈ [k]
5: y ← a t× k array of integers initially 0.
6: Process:
7: for each i do
8: for s = 1 to t do
9: for j = 1 to k do

10: y[s, j]← y[s, j] + ci · hs,j(xi)
11: end for
12: end for
13: end for
14: Output: Median{ 1

k

∑k
j=1 y

2[s, j] | s ∈ [t]}

By the lemma this produces a 1 ± ε approximation to F2 with probability at least 1 − δ. Its total
space is O( 1

ε2 log(1/δ)(logM + log n)). Because of the linearity of the calculation of y, it is not
hard to see that we can also use it to estimate the `2 (Euclidean) difference between the vectors
described a pair of interleaved streams; we simply flip the ci for one of the two streams.

A Geometric Interpretation of the Tug-of-War Consider the part of the sketch, before the
application of the median trick, when we have averaged k = d6/ε2e (pairwise) independent copies
of the basic sketch. Before averaging the sketch corresponds to a matrix-vector product given by a
k ×M matrix B = Bh1,...,hk

consisting of ±1 values where the (i, j)-th entry is hi(j),
−1 +1 −1 −1 +1 +1 −1 −1 · · · · · · −1 +1 +1 −1
+1 +1 +1 −1 −1 −1 −1 +1 · · · · · · +1 −1 +1 −1
+1 −1 −1 +1 +1 −1 +1 −1 · · · · · · +1 −1 −1 +1
· · · · · · · · · · · · · · · · · ·
−1 −1 +1 +1 −1 +1 +1 +1 · · · · · · −1 +1 −1 +1

 ,
whose columns are 4-wise independent and rows are pairwise independent, The estimate produced
by the average for this part of the algorithm is 1

k

∑s
i=1 y

2
i where y = B ·f . The error estimate given

by the variance reduction is

P[|1
k

k∑
i=1

y2
i − F2| > ε F2] ≤

1

3
.

Expanding this in terms of the `2 norm this says that with probability at least 2/3,

(1− ε)||f ||22 ≤
1

k

k∑
i=1

y2
i =

1

k
||y||22 =

1

k
||B · f ||22 ≤ (1 + ε)||f ||22.
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Taking square roots, with probabilty at least 2/3, we have

√
1− ε||f ||2 ≤

1√
k
||B · f ||2 ≤

√
1 + ε||f ||2.

Now
√

1− ε is larger than 1− ε and roughly 1− ε/2; similarly
√

1 + ε is smaller than 1 + ε and
roughly 1−ε/2. It follows that with probability at least 2/3, the matrixB/

√
k mapsM dimensions

to only a constant number of dimensions k and approximately preserves the 2-norm, which is a
convenient way to think about what is going in this part of the sketch. We will see other methods
with stronger guarantees.
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