
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 5: More Heavy Hitters: Count Sketch
April 14, 2014

Lecturer: Paul Beame Scribe: Paul Beame

We recall that for the turnstile and cash-register versions of streaming input are of the form (xi, ci)
for xi ∈ [M] and ci ∈ Z and the frequency vector f is given by fj =

∑
i: xi=j ci. Recall:

The COUNT-MIN Sketch Algorithm
1: Initialize:
2: k ← d2/εe
3: t← dlog2(1/δ)e
4: C ← t× k integer array, initially 0
5: Choose h1, . . . ht : [M]→ [k] independently from a 2-universal family of hash functions
6: Process:
7: for each i do
8: for s = 1 to t do
9: C[s, hs(xi)]← C[s, hs(xi)] + ci

10: end for
11: end for
12: Output: f̃ ← (C, h1, . . . , ht)

13: f̃j = min{C[s, hs(j)] : s = 1, . . . , t}

The total space of the sketch is O(1
ε
log(1/δ)(log n+ logM)). By our construction, for each fixed

j, fj ≤ f̃j ≤ fj + ε||f−j||1

In order to get a guarantee that is closer to that of the Misra-Gries sketch we may actually want this
level of approximation for every j with a fixed failure probability δ. To do this we can apply the
COUNT-MIN Sketch with δ/M instead of δ and take a union bound. This would replace log(1/δ)
with log(1/δ) + logM in our space bound.

COUNT-MIN as a Linear Map If we view the C matrix as a length tk vector, we can see that
it is a linear function of the data as follows. (The linearity of this sketch is why it can handle the
turnstile model, though it does require that the final f vector is non-negative.)

Define a tk ×M matrix Ah1,...,ht depending on h1, . . . , ht of the COUNT-MIN Sketch where for
s ∈ [t] and ` the (s, `) entry corresponds to row (s−1)k+ ` of A. For each block of k rows, which
corresponds to a single hash function, there will be precisely one 1 in each column; the rest will be
0. Alternative, the row corresponding to the pair (s, `) will be the characteristic vector of h−1

s (`),

1

the set of all elements of [M] that h1 maps to `. Since M is enormous, this will be a huge matrix
with many more columns than rows. It is, however, very succinctly specified.

The input (xi, ci) corresponds to a vector of length M , with 0’s everywhere except for a single
ci in the xi-th entry, a vector ci exi

where exi
is the xi-th unit vector. The t updates to C add

Ah1,...htci exi
to the current vector representing the tk elements of C.



0 0 1 0 0 1 0 1 · · · · · · 1 0 0 0
0 1 0 0 0 0 0 0 · · · · · · 0 1 0 0
0 0 0 1 0 0 0 0 · · · · · · 0 0 0 0
1 0 0 0 1 0 0 0 · · · · · · 0 0 0 1
0 0 0 0 0 0 1 0 · · · · · · 0 0 1 0
0 0 0 0 0 0 1 0 · · · · · · 0 0 1 0
0 0 1 0 0 1 0 1 · · · · · · 1 0 0 0
0 0 0 1 0 0 0 0 · · · · · · 0 0 0 0
0 1 0 0 0 0 0 0 · · · · · · 0 1 0 0
1 0 0 0 1 0 0 0 · · · · · · 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

0 1 0 0 0 0 0 0 · · · · · · 0 1 0 0
0 0 1 0 0 1 0 1 · · · · · · 1 0 0 0
1 0 0 0 1 0 0 0 · · · · · · 0 0 0 1
0 0 0 1 0 0 0 0 · · · · · · 0 0 0 0
0 0 0 0 0 0 1 0 · · · · · · 0 0 1 0



·



0
0
0
0
0
0
0
ci
...
...
0
0
0
0



.

The total sketch is then
∑n

i=1 ci Ah1,...,ht · exi
= Ah1,...,ht · (

∑n
i=1 ci exi

). But the j-th coordinate
of

∑n
i=1 ci exi

is precisely fj =
∑

i: xi=j ci so
∑n

i=1 ci exi
= f . Therefore, the straightened out

version of the final version of C is
Ah1,...,ht · f.

The COUNT Sketch By our construction, the COUNT-MIN Sketch produces a f̃ such that for
each fixed j, fj ≤ f̃j ≤ fj +ε||f−j||1. The COUNT Sketch, which was actually defined earlier than
the simpler COUNT-MIN Sketch, will give a more accurate approximation in that the error will be
based on the `2 norm, rather than the `1 norm of f . This will allow us to find (γ, 2) heavy hitters
rather than just (γ, 1)-heavy hitters.

As before, we begin first with a basic version with large failure probability. The main difference
is that instead of always adding ci at the location h(xi), depending on xi we may subtract ci rather
than adding it. Consider a single j∗. For every i such that xi = j∗ the value ci will consistently
either be subtracted or added to location C[h(j∗)]. To recover the contribution for j∗ we flip the
sign depending on j∗. The big advantage versus the COUNT-MIN sketch where collisions always

2

bias things in the same direction, is that the other values of j that collide with j∗ under the hash
function will tend to cancel each other out because of the random directions of their signs.

The Basic COUNT Sketch
1: Initialize:
2: k ← d3/ε2e
3: C ← length k integer array, initially 0
4: Choose h : [M]→ [k] from a 2-universal family of hash functions
5: Choose g : [M]→ {1,−1} from a pairwise independent family of hash functions
6: Process:
7: for each i do
8: for s = 1 to t do
9: C[h(xi)]← C[h(xi)] + ci g(xi)

10: end for
11: end for
12: Output: f̃ ← (C, h, g)

13: f̃j = g(j) · C[h(j)]

Analysis Fix j∗ ∈ [M]. Let

Yj =

{
1 if h(j) = h(j∗)

0 otherwise.

Then

f̃j∗ = g(j∗) · C[h(j∗)]

= g(j∗) ·
n∑

i=1

ci · g(xi)Yxi

= g(j∗) ·
M∑

j=1

fj g(j)Yj

= g(j∗)2fj∗Yj∗ +
∑
j 6=j∗

fj g(j
∗)g(j)Yj

= fj∗ +
∑
j 6=j∗

fj g(j
∗)g(j)Yj ()

since g(j∗)2 = 1 and Yj∗ = 1. Therefore, by linearity of expectation,

E(f̃j∗) = fj∗ +
M∑

j 6=j∗

fj E(g(j∗)g(j)Yj).

3

Now since g is pairwise independent and is independent of Yj which is a function solely of h, for
j 6= j∗ we have E(g(j∗)g(j)Yj) = E(g(j∗))E(g(j)Yj) = 0 · E(g(j)Yj) = 0. Therefore

E(f̃j∗) = fj∗ ;

i.e, f̃j∗ is an unbiased estimator of fj∗ . We now compute its variance

V ar(f̃j∗) = E((f̃j∗ − fj∗)
2)

= E((
∑
j 6=j∗

fj g(j
∗)g(j)Yj)

2) by (1)

= E(
∑
i 6=j∗

∑
j 6=j∗

fi fj g(i)g(j)YiYj) since g(j∗)2 = 1

=
∑
i 6=j∗

∑
j 6=j∗

fi fj E(g(i)g(j)YiYj)

Observe that for i 6= j, since g is pairwise independent and independent of h, E(g(i)g(j)YiYj) =
E(g(i))E(g(j)YiYj) = 0. Therefore the only terms in the variance that are survive are when i = j,
so

V ar(f̃j∗) =
∑
j 6=j∗

f 2
j E(Y 2

j).

Now E(Y 2
j) = E(Yj) since Yj is an indicator and E(Yj) = P[h(j) = h(j∗)] = 1/k by the 2-

universal property of h. Therefore

V ar(f̃j∗) =
∑
j 6=j∗

f 2
j /k =

||f ||22 − f 2
j∗

k
=
||f−j∗ ||22

k
,

where fj∗ = (f1, . . . , fj∗−1, fj∗+1, . . . , fM). By Chebyshev’s inequality,

P[|f̃j∗ − fj∗| ≥ ε||f−j∗||2] ≤ V ar(f̃j∗)

ε2||f−j∗||22
≤ 1

ε2k
≤ 1/3

by our choice of k. Since this is bounded below 1/2 we can apply the median trick to get the final
COUNT Sketch which is given below.

The COUNT Sketch Algorithm
1: Initialize:
2: k ← d3/ε2e
3: t← dc log2(1/δ)e for some constant c.
4: C ← t× k integer array, initially 0
5: Choose h1, . . . ht : [M]→ [k] independently from a 2-universal family of hash functions

4

6: Choose g1, . . . , gt : [M] → {1,−1} independently from a pairwise independent family of
hash functions

7: Process:
8: for each i do
9: for s = 1 to t do

10: C[s, hs(xi)]← C[s, hs(xi)] + ci gs(xi)
11: end for
12: end for
13: Output: f̃ ← (C, h1, . . . , ht, g1, . . . , gt)

14: f̃j = Median{gs(j) · C[s, hs(j)] : s = 1, . . . , t}

Therefore for each j, with probability at least 1− δ,

fj − ε||f−j||2 ≤ f̃j ≤ fj + ε||f−j||2.

The total space is O(1
ε2 log(1/δ)(log n + logM)) which pays for the sharper bound for the `2

rather than `1 norm at the space cost of a 1/ε2 factor instead of a 1/ε factor. In matrix form, the
representation of this sketch is something like



0 0 −1 0 0 +1 0 −1 · · · · · · −1 0 0 0
0 +1 0 0 0 0 0 0 · · · · · · 0 −1 0 0
0 0 0 −1 0 0 0 0 · · · · · · 0 0 0 0

+1 0 0 0 −1 0 0 0 · · · · · · 0 0 0 −1
0 0 0 0 0 0 +1 0 · · · · · · 0 0 0 0
0 0 0 0 0 0 0 0 · · · · · · 0 0 −1 0
0 0 −1 0 0 +1 0 −1 · · · · · · −1 0 0 0
0 0 0 0 0 0 0 0 · · · · · · 0 0 −1 0

+1 0 0 0 −1 0 0 0 · · · · · · 0 0 0 −1
0 0 0 −1 0 0 0 0 · · · · · · 0 0 0 0
0 0 0 0 0 0 +1 0 · · · · · · 0 0 0 0
0 +1 0 0 0 0 0 0 · · · · · · 0 −1 0 0
...

...
...

...
...

...
...

...
...

...
...

0 +1 0 0 0 0 0 0 · · · · · · 0 −1 0 0
0 0 0 0 0 0 0 0 · · · · · · 0 0 −1 0

+1 0 0 0 −1 0 0 0 · · · · · · 0 0 0 −1
0 0 0 −1 0 0 0 0 · · · · · · 0 0 0 0
0 0 0 0 0 0 +1 0 · · · · · · 0 0 0 0
0 0 −1 0 0 +1 0 −1 · · · · · · −1 0 0 0



.

Practical frequency estimation There are many reasons in practice to be able to maintain the
The three algorithms we have seen for frequency estimation and heavy hitters are interesting for

5

practice. There is a nice survey on the subject by Cormode and Hadjelefhteriou in a CACM 2009
article. This also discusses a deterministic algorithm, the Space-Saving algorithm of Metwally
et al. from 2006, which is very similar to the Misra-Gries Algorithm but has some other nice
properties, and is discussed in a problem on the first homework. Though we have given worst-case
bounds, the hard cases are when the data is very uniformly distributed; one can show that if there
is sufficient skew in the data, some of these algorithms will find the heavy hitters with certainty.

6

