CSE 522: Sublinear (and Streaming) Algorithms

Spring 2014

Lecture 5: More Heavy Hitters: Count Sketch

April 14, 2014

Lecturer: Paul Beame

Scribe: Paul Beame

We recall that for the turnstile and cash-register versions of streaming input are of the form (x_i, c_i) for $x_i \in [M]$ and $c_i \in \mathbb{Z}$ and the frequency vector f is given by $f_j = \sum_{i: x_i=j} c_i$. Recall:

The COUNT-MIN Sketch Algorithm

1: Initialize: 2: $k \leftarrow \lceil 2/\varepsilon \rceil$ 3: $t \leftarrow \lceil \log_2(1/\delta) \rceil$ 4: $C \leftarrow t \times k$ integer array, initially 0 5: Choose $h_1, \ldots, h_t : [M] \to [k]$ independently from a 2-universal family of hash functions 6: Process: 7: for each i do for s = 1 to t do 8: $C[s, h_s(x_i)] \leftarrow C[s, h_s(x_i)] + c_i$ 9: 10: end for 11: end for 12: Output: $\tilde{f} \leftarrow (C, h_1, \dots, h_t)$ 13: $\overline{\tilde{f}_j} = \min\{C[s, h_s(j)] : s = 1, \dots, t\}$

The total space of the sketch is $O(\frac{1}{\varepsilon} \log(1/\delta)(\log n + \log M))$. By our construction, for each fixed $j, f_j \leq \tilde{f}_j \leq f_j + \varepsilon ||f_{-j}||_1$

In order to get a guarantee that is closer to that of the Misra-Gries sketch we may actually want this level of approximation for every j with a fixed failure probability δ . To do this we can apply the COUNT-MIN Sketch with δ/M instead of δ and take a union bound. This would replace $\log(1/\delta)$ with $\log(1/\delta) + \log M$ in our space bound.

COUNT-MIN as a Linear Map If we view the C matrix as a length tk vector, we can see that it is a *linear* function of the data as follows. (The linearity of this sketch is why it can handle the turnstile model, though it does require that the final f vector is non-negative.)

Define a $tk \times M$ matrix A_{h_1,\ldots,h_t} depending on h_1,\ldots,h_t of the COUNT-MIN Sketch where for $s \in [t]$ and ℓ the (s,ℓ) entry corresponds to row $(s-1)k+\ell$ of A. For each block of k rows, which corresponds to a single hash function, there will be precisely one 1 in each column; the rest will be 0. Alternative, the row corresponding to the pair (s,ℓ) will be the characteristic vector of $h_s^{-1}(\ell)$,

the set of all elements of [M] that h_1 maps to ℓ . Since M is enormous, this will be a huge matrix with many more columns than rows. It is, however, very succinctly specified.

The input (x_i, c_i) corresponds to a vector of length M, with 0's everywhere except for a single c_i in the x_i -th entry, a vector $c_i e_{x_i}$ where e_{x_i} is the x_i -th unit vector. The t updates to C add $A_{h_1,\ldots,h_t}c_i e_{x_i}$ to the current vector representing the tk elements of C.

_													_			
0	0	1	0	0	1	0	1	•••	• • •	1	0	0	0			
0	1	0	0	0	0	0	0	• • •	• • •	0	1	0	0		[0]]
0	0	0	1	0	0	0	0	•••	• • •	0	0	0	0		0	
1	0	0	0	1	0	0	0	• • •	• • •	0	0	0	1		0	
0	0	0	0	0	0	1	0	• • •	• • •	0	0	1	0		0	
0	0	0	0	0	0	1	0	• • •	• • •	0	0	1	0		0	
0	0	1	0	0	1	0	1	• • •	• • •	1	0	0	0		0	
0	0	0	1	0	0	0	0	• • •	• • •	0	0	0	0		0	
0	1	0	0	0	0	0	0	•••	• • •	0	1	0	0	•	c_i	.
1	0	0	0	1	0	0	0	•••	•••	0	0	0	1		:	
:	:	÷	:	:	:	:	:	·	۰.	:	÷	÷	÷			
0	1	0	0	0	0	0	0	• • •	• • •	0	1	0	0		0	
0	0	1	0	0	1	0	1	• • •	• • •	1	0	0	0		0	
1	0	0	0	1	0	0	0	• • •	• • •	0	0	0	1		0	
0	0	0	1	0	0	0	0	• • •	• • •	0	0	0	0		0	
0	0	0	0	0	0	1	0	•••	•••	0	0	1	0			-
													-	-		

The total sketch is then $\sum_{i=1}^{n} c_i A_{h_1,\dots,h_t} \cdot e_{x_i} = A_{h_1,\dots,h_t} \cdot (\sum_{i=1}^{n} c_i e_{x_i})$. But the *j*-th coordinate of $\sum_{i=1}^{n} c_i e_{x_i}$ is precisely $f_j = \sum_{i: x_i=j} c_i$ so $\sum_{i=1}^{n} c_i e_{x_i} = f$. Therefore, the straightened out version of the final version of *C* is

 $A_{h_1,\ldots,h_t} \cdot f.$

The COUNT **Sketch** By our construction, the COUNT-MIN Sketch produces a \tilde{f} such that for each fixed $j, f_j \leq \tilde{f}_j \leq f_j + \varepsilon ||f_{-j}||_1$. The COUNT Sketch, which was actually defined earlier than the simpler COUNT-MIN Sketch, will give a more accurate approximation in that the error will be based on the ℓ_2 norm, rather than the ℓ_1 norm of f. This will allow us to find $(\gamma, 2)$ heavy hitters rather than just $(\gamma, 1)$ -heavy hitters.

As before, we begin first with a basic version with large failure probability. The main difference is that instead of always adding c_i at the location $h(x_i)$, depending on x_i we may subtract c_i rather than adding it. Consider a single j^* . For every i such that $x_i = j^*$ the value c_i will consistently either be subtracted or added to location $C[h(j^*)]$. To recover the contribution for j^* we flip the sign depending on j^* . The big advantage versus the COUNT-MIN sketch where collisions always bias things in the same direction, is that the other values of j that collide with j^* under the hash function will tend to cancel each other out because of the random directions of their signs.

The Basic COUNT Sketch

1: Initialize: 2: $k \leftarrow \lceil 3/\varepsilon^2 \rceil$ 3: $C \leftarrow \text{length } k \text{ integer array, initially } 0$ 4: Choose $h: [M] \to [k]$ from a 2-universal family of hash functions 5: Choose $g: [M] \to \{1, -1\}$ from a pairwise independent family of hash functions 6: <u>Process</u>: 7: for each i do for s = 1 to t do 8: $C[h(x_i)] \leftarrow C[h(x_i)] + c_i g(x_i)$ 9: end for 10: 11: end for 12: Output: $\tilde{f} \leftarrow (C, h, g)$ 13: $\overline{\tilde{f}_j} = g(j) \cdot C[h(j)]$

Analysis Fix
$$j^* \in [M]$$
. Let

$$Y_j = \begin{cases} 1 & \text{if } h(j) = h(j^*) \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} \tilde{f}_{j^*} &= g(j^*) \cdot C[h(j^*)] \\ &= g(j^*) \cdot \sum_{i=1}^n c_i \cdot g(x_i) Y_{x_i} \\ &= g(j^*) \cdot \sum_{j=1}^M f_j \ g(j) Y_j \\ &= g(j^*)^2 f_{j^*} Y_{j^*} + \sum_{j \neq j^*} f_j \ g(j^*) g(j) Y_j \\ &= f_{j^*} + \sum_{j \neq j^*} f_j \ g(j^*) g(j) Y_j \end{split}$$
(0)

since $g(j^*)^2 = 1$ and $Y_{j^*} = 1$. Therefore, by linearity of expectation,

$$\mathbb{E}(\tilde{f}_{j^*}) = f_{j^*} + \sum_{j \neq j^*}^M f_j \mathbb{E}(g(j^*)g(j)Y_j).$$

Now since g is pairwise independent and is independent of Y_j which is a function solely of h, for $j \neq j^*$ we have $\mathbb{E}(g(j^*)g(j)Y_j) = \mathbb{E}(g(j^*))\mathbb{E}(g(j)Y_j) = 0 \cdot \mathbb{E}(g(j)Y_j) = 0$. Therefore

$$\mathbb{E}(\tilde{f}_{j^*}) = f_{j^*};$$

i.e, \tilde{f}_{j^*} is an unbiased estimator of f_{j^*} . We now compute its variance

$$Var(\tilde{f}_{j^*}) = \mathbb{E}((\tilde{f}_{j^*} - f_{j^*})^2)$$

= $\mathbb{E}((\sum_{j \neq j^*} f_j \ g(j^*)g(j)Y_j)^2)$ by (1)
= $\mathbb{E}(\sum_{i \neq j^*} \sum_{j \neq j^*} f_i \ f_j \ g(i)g(j)Y_iY_j)$ since $g(j^*)^2 = 1$
= $\sum_{i \neq j^*} \sum_{j \neq j^*} f_i \ f_j \ \mathbb{E}(g(i)g(j)Y_iY_j)$

Observe that for $i \neq j$, since g is pairwise independent and independent of h, $\mathbb{E}(g(i)g(j)Y_iY_j) = \mathbb{E}(g(i))\mathbb{E}(g(j)Y_iY_j) = 0$. Therefore the only terms in the variance that are survive are when i = j, so

$$Var(\tilde{f}_{j^*}) = \sum_{j \neq j^*} f_j^2 \mathbb{E}(Y_j^2).$$

Now $\mathbb{E}(Y_j^2) = \mathbb{E}(Y_j)$ since Y_j is an indicator and $\mathbb{E}(Y_j) = P[h(j) = h(j^*)] = 1/k$ by the 2-universal property of h. Therefore

$$Var(\tilde{f}_{j^*}) = \sum_{j \neq j^*} f_j^2 / k = \frac{||f||_2^2 - f_{j^*}^2}{k} = \frac{||f_{-j^*}||_2^2}{k},$$

where $f_{j^*} = (f_1, \ldots, f_{j^*-1}, f_{j^*+1}, \ldots, f_M)$. By Chebyshev's inequality,

$$\mathbb{P}[|\tilde{f}_{j^*} - f_{j^*}| \ge \varepsilon ||f_{-j^*}||_2] \le \frac{Var(f_{j^*})}{\varepsilon^2 ||f_{-j^*}||_2^2} \le \frac{1}{\varepsilon^2 k} \le 1/3$$

by our choice of k. Since this is bounded below 1/2 we can apply the median trick to get the final COUNT Sketch which is given below.

The COUNT Sketch Algorithm

1: Initialize:

2: $k \leftarrow [3/\varepsilon^2]$

- 3: $t \leftarrow \lceil c \log_2(1/\delta) \rceil$ for some constant c.
- 4: $C \leftarrow t \times k$ integer array, initially 0
- 5: Choose $h_1, \ldots, h_t : [M] \to [k]$ independently from a 2-universal family of hash functions

- 6: Choose $g_1, \ldots, g_t : [M] \to \{1, -1\}$ independently from a pairwise independent family of hash functions
- 7: <u>Process:</u>
- 8: **for** each *i* **do**
- 9: for s = 1 to t do 10: $C[s, h_s(x_i)] \leftarrow C[s, h_s(x_i)] + c_i g_s(x_i)$ 11: end for 12: end for 13: Output: $\tilde{f} \leftarrow (C, h_1, \dots, h_t, g_1, \dots, g_t)$ 14: $\overline{\tilde{f}_j} = \operatorname{Median}\{g_s(j) \cdot C[s, h_s(j)] : s = 1, \dots, t\}$

Therefore for each j, with probability at least $1 - \delta$,

$$|f_j - \varepsilon||f_{-j}||_2 \le f_j \le f_j + \varepsilon||f_{-j}||_2.$$

The total space is $O(\frac{1}{\varepsilon^2}\log(1/\delta)(\log n + \log M))$ which pays for the sharper bound for the ℓ_2 rather than ℓ_1 norm at the space cost of a $1/\varepsilon^2$ factor instead of a $1/\varepsilon$ factor. In matrix form, the representation of this sketch is something like

0	0	-1	0	0	+1	0	-1	•••	•••	-1	0	0	0]
0	+1	0	0	0	0	0	0	•••	•••	0	-1	0	0
0	0	0	-1	0	0	0	0	•••	• • •	0	0	0	0
+1	0	0	0	-1	0	0	0	•••	• • •	0	0	0	-1
0	0	0	0	0	0	+1	0	•••	•••	0	0	0	0
0	0	0	0	0	0	0	0	•••	• • •	0	0	-1	0
0	0	-1	0	0	+1	0	-1	•••	• • •	-1	0	0	0
0	0	0	0	0	0	0	0	•••	•••	0	0	-1	0
+1	0	0	0	-1	0	0	0	•••	• • •	0	0	0	-1
0	0	0	-1	0	0	0	0	•••	•••	0	0	0	0
0	0	0	0	0	0	+1	0	•••	• • •	0	0	0	0
0	+1	0	0	0	0	0	0	•••	•••	0	-1	0	0
:	:	÷	÷	:	÷	:	÷	۰.	۰.	÷	÷	÷	:
0	+1	0	0	0	0	0	0	•••	•••	0	-1	0	0
0	0	0	0	0	0	0	0	•••	• • •	0	0	-1	0
+1	0	0	0	-1	0	0	0	•••	• • •	0	0	0	-1
0	0	0	-1	0	0	0	0	•••	• • •	0	0	0	0
0	0	0	0	0	0	+1	0	•••	•••	0	0	0	0
0	0	-1	0	0	+1	0	-1	•••	• • •	-1	0	0	0

Practical frequency estimation There are many reasons in practice to be able to maintain the The three algorithms we have seen for frequency estimation and heavy hitters are interesting for

practice. There is a nice survey on the subject by Cormode and Hadjelefhteriou in a CACM 2009 article. This also discusses a deterministic algorithm, the Space-Saving algorithm of Metwally et al. from 2006, which is very similar to the Misra-Gries Algorithm but has some other nice properties, and is discussed in a problem on the first homework. Though we have given worst-case bounds, the hard cases are when the data is very uniformly distributed; one can show that if there is sufficient skew in the data, some of these algorithms will find the heavy hitters with certainty.