CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 5: More Heavy Hitters: Count Sketch
April 14,2014

Lecturer: Paul Beame Scribe: Paul Beame

We recall that for the turnstile and cash-register versions of streaming input are of the form (z;, ¢;)
for z; € [M] and ¢; € Z and the frequency vector f is givenby f; =, , _, ¢;. Recall:

The COUNT-MIN Sketch Algorithm
Initialize:
k — [2/¢]
t — [logy(1/9)]
C « t x k integer array, initially O
Choose hy,...h; : [M] — [k] independently from a 2-universal family of hash functions
Process:
for each 7 do
fors=1totdo
Cls, hs(z;)] <« C[s, hs(z;)] + ¢
end for
: end for
. Output: f — (C, hy, ..., hy)

13: f; =min{C[s, hs(j)] : s=1,...,t}

R e A

—_ = =

The total space of the sketch is O (£ log(1/8)(log n + log M)). By our construction, for each fixed
3 i < fi < fi+ellf-lh

In order to get a guarantee that is closer to that of the Misra-Gries sketch we may actually want this
level of approximation for every j with a fixed failure probability 6. To do this we can apply the
COUNT-MIN Sketch with § /M instead of § and take a union bound. This would replace log(1/4)
with log(1/9) 4 log M in our space bound.

COUNT-MIN as a Linear Map If we view the C' matrix as a length ¢tk vector, we can see that
it is a linear function of the data as follows. (The linearity of this sketch is why it can handle the
turnstile model, though it does require that the final f vector is non-negative.)

Define a tk x M matrix Ay, 5 depending on hq, ..., h; of the COUNT-MIN Sketch where for
s € [t] and ¢ the (s, ¢) entry corresponds to row (s — 1)k + ¢ of A. For each block of & rows, which
corresponds to a single hash function, there will be precisely one 1 in each column; the rest will be
0. Alternative, the row corresponding to the pair (s, £) will be the characteristic vector of i1 (¢),

1

the set of all elements of [A/] that h; maps to £. Since M is enormous, this will be a huge matrix
with many more columns than rows. It is, however, very succinctly specified.

The input (x;, ¢;) corresponds to a vector of length M, with 0’s everywhere except for a single
c; in the x;-th entry, a vector ¢; e,, where e, is the x;-th unit vector. The ¢ updates to C' add
Ap,...n.Ci es,; to the current vector representing the ¢tk elements of C'.

00100101 1000
01000000 0100 [0 7]
00010000 0000 0
10001000 0001 0
0000O0O0T1O0 0010 0
0000O0OOT1O0 0010 0
00100101 1 000 0
00010000 0000 0
01000000 0100 Ci
10001000 0001 :
01000000 0100 0
00100101 1000 0
10001000 0001 0
00010000 0000 0
(00000010 0010 |

The total sketch is then Y | ¢; Apy py - €x; = Apyne - (Oi) i €4,). But the j-th coordinate
of Y i, ci ey, is precisely f; = > ., _icis0 YL ¢ e, = f. Therefore, the straightened out
version of the final version of C'is

The COUNT Sketch By our construction, the COUNT-MIN Sketch produces a f such that for
each fixed §, f; < f; < f;+¢l|f_;||1. The COUNT Sketch, which was actually defined earlier than
the simpler COUNT-MIN Sketch, will give a more accurate approximation in that the error will be
based on the ¢, norm, rather than the ¢; norm of f. This will allow us to find (-, 2) heavy hitters
rather than just (-, 1)-heavy hitters.

As before, we begin first with a basic version with large failure probability. The main difference
is that instead of always adding ¢; at the location h(x;), depending on z; we may subtract c; rather
than adding it. Consider a single j*. For every 7 such that x; = j* the value ¢; will consistently
either be subtracted or added to location C'[h(j*)]. To recover the contribution for j* we flip the
sign depending on j*. The big advantage versus the COUNT-MIN sketch where collisions always

bias things in the same direction, is that the other values of j that collide with j* under the hash
function will tend to cancel each other out because of the random directions of their signs.

The Basic COUNT Sketch

—_

—_ = =

—
(O8]

R e A U i

. Initialize:

k — [3/£%]
C « length k integer array, initially O
Choose h : [M]| — [k] from a 2-universal family of hash functions
Choose g : [M] — {1, —1} from a pairwise independent family of hash functions
Process:
for each i do

for s =1totdo

Clh(z)] « Clh(@)] + ¢ g(x:)
end for

: end for
: Output: f < (C,h,g)

fi = 9() - Clh(5)]

Analysis Fix j* € [M]. Let

0 otherwise.

v {1 if h(j) = h(j*)

Then

=g(*)- Y i glai)Ya,

i]‘:/fl
=g90") - > _ 1 9()Y;
j=1
= g(") 1Y + > f 9(M)9()Y;
J#£G*

= fir+) £ 9(G)9()Y; 0
por

since g(5*)? = 1 and Y;« = 1. Therefore, by linearity of expectation,

E(fi-) = f- + Y £ Elg(57)g(j)Y5).

J#I*

Now since g is pairwise independent and is independent of Y; which is a function solely of £, for
J # j* we have E(g(57)g(7)Y;) = E(g9(57))E(9(45)Y;) = 0-E(g(;)Y;) = 0. Therefore

E(fj+) = fi=;
i.e, f;« is an unbiased estimator of f;-. We now compute its variance

Var(fj) = E((fj- — f)%)
=E(()_ £ 90")9()Y))?) by (1)
i#5
=EQQ_ D> fifigg()YiY)) since g(j7)* =1
i5* 5
=YD fi i E(g(Dg()YiY))

i 5

Observe that for 7 # j, since g is pairwise independent and independent of h, E(g(i)g(7)Y;Y;) =
E(g(2))E(g(j)Y;Y;) = 0. Therefore the only terms in the variance that are survive are when ¢ = j,
SO

Var(fi) =Y f7E(Y}).
J#5*
Now E(Y}?) = E(Y}) since Y; is an indicator and E(Y;) = P[h(j) = h(j*)] = 1/k by the 2-
universal property of h. Therefore

— B
Y

V(i) = 3 p2n = VI8
! ! k k

i
where f;» = (f1,..., fi~—1, fj*+1,- - -, fur). By Chebyshev’s inequality,

Var(fj*)
] < 2| f-j-113

< <1/3
S 5 S

Pl |fj — e

> el|f-jr

by our choice of k. Since this is bounded below 1/2 we can apply the median trick to get the final
COUNT Sketch which is given below.

The COUNT Sketch Algorithm

Initialize:

k — [3/£%]

t — [clogy(1/6)] for some constant c.

C «— t x k integer array, initially O

Choose hy,...h; : [M] — [k] independently from a 2-universal family of hash functions

AN

4

6: Choose ¢1,...,g; : [M] — {1,—1} independently from a pairwise independent family of
hash functions
7: Process:
8: for each i do
: fors=1totdo
10: Cls, hs(z;)] < Cls, hs(;)] + ¢ gs(x;)

11: end for
12: end for

13: Output: f «— (C,hy,... . he, g1, Gi)

14: f; = Median{g,(j) - C[s, hs(j)] : s=1,...,t}
Therefore for each j, with probability at least 1 — ¢,
fi—ellf-sllz < f5 < £ + el flla:

The total space is O(Z log(1/6)(logn + log M)) which pays for the sharper bound for the ¢,
rather than ¢; norm at the space cost of a 1/£? factor instead of a 1/¢ factor. In matrix form, the
representation of this sketch is something like

0 0 -1 0 0 41 0 -1 -1 0 0 0
0 41 0 0 0 0 0 0 0 -1 0 0
0 0 0 -1 0 0 0 0 0 0 0 0
1.0 0 0 -1 0 0 0 0 0 0 -1
0 0 0 0 0 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0
0 0 -1 0 0 +1 0 -1 1T 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0
+1 0 0 0 -1 0 0 0 0 0 0 -1
0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 +1 0 0 0 0 0
0 41 0 0 0 0 0 0 0 -1 0 0
0 +L 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 -1 0
41 0 0 0 -1 0 0 0 0 0 0 -1
0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 +1 0 0 0 0 0

0 0 -1 0 0 41 0 -1 10 0 0 |

Practical frequency estimation There are many reasons in practice to be able to maintain the
The three algorithms we have seen for frequency estimation and heavy hitters are interesting for

5

practice. There is a nice survey on the subject by Cormode and Hadjelethteriou in a CACM 2009
article. This also discusses a deterministic algorithm, the Space-Saving algorithm of Metwally
et al. from 2006, which is very similar to the Misra-Gries Algorithm but has some other nice
properties, and is discussed in a problem on the first homework. Though we have given worst-case
bounds, the hard cases are when the data is very uniformly distributed; one can show that if there
is sufficient skew in the data, some of these algorithms will find the heavy hitters with certainty.

