
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 4: Finding Heavy Hitters in Streams
April 9, 2014

Lecturer: Paul Beame Scribe: Paul Beame

In the last lecture the stronger version of the algorithm reduced the space from O(ε−2(logM +
log log n)) to roughly O(logM + ε−2 log log n). If the inputs are typical 64-bit word values, for
example, then log2M is only 64 and is certainly larger than log n. On the other hand, this might
be comparable to or smaller than ε−2; more generally we can think of the values of logM and
1/ε as typically polynomially related to each other so the smaller space algorithm as achieving a
polynomial factor improvement in the space bound.

There is considerable practical utility in estimating the number of distinct values in the columns
in a relation in order to estimate the costs of different query plans for relational databases; the
differences in the costs for different plans can be very substantial, which makes these estimates
very important. The algorithm of choice in practice is the HYPERLOGLOG algorithm of Flajolet et
al. [?], which assumes the availability of a hash function h that behaves as if it were a truly random
function. Because this hash function is assumed to be some standard procedure, its specification
is not included in the space bound. The code for the algorithm is freely available. The basic idea
also relies on the same zero counting method used in the other algorithms. It maintains these
approximate counts in K = Θ(1/ε2) separate buckets, and takes the harmonic mean of the results.

HYPERLOGLOG Algorithm
Initialize:
K ← smallest power of 2 larger than 3/ε2

View random h : [M]→ [M] as map h : [M]→ [K]× {0, 1}m−log2K

z1, . . . , zk ← 0
Process:
for each i do

(k, j)← h(xi)
zk ← max(zk, zeroes(j))

end for
Output:
αKK

2 ·HM(2z1 , . . . 2zk) where HM(a1, . . . , aK) = (
∑k

i=1 1/ai)
−1 is the Harmonic Mean func-

tion and αK is a specific constant depending on K.

The basic idea of the algorithm is that we expect F0/K elements to land in each bucket so we expect
each 2zk to be roughly F0/K. We observe that HM(F0/K, . . . , F0/K) = (K(K/F0))

−1 = F0/K
2.

When compared with the geometric or arithmetic means, the harmonic mean has the advantage of
discounting outliers, particularly on the high side, where Markov’s inequality gives weak bounds.

1

The αK is given by a closed form integral that can be approximated to arbitrary precision and
compensates for systematic bias from taking the harmonic mean so that the resulting estimator is
unbiased. Flajolet et al. show that for a truly random function the resulting estimator has error at
most (1 + 1.48/

√
K) ≤ 1 + ε with high probability for a random function h.

A big advantage of the HYPERLOGLOG algorithm in practice is that each input element re-
quires only one hash function evaluation. The space complexity ignoring the hash function is
O(ε−2 log log n).

1 Heavy Hitters in Data Streams

Consider the goal of finding all frequent elements in a data stream. In particular consider finding a
majority element; i.e., an element j such that fj > 0.

Majority Algorithm
Initialize: c← 0
Process:
for each i do

if c=0 then
j ← xi

end if
if xi = j then

c← c+ 1
else

c← c− 1
end if

end for
Output: j

Claim: If fj > n/2 then the output will be j:

Observe that while c > 0, the value of j does not change. We can therefore divide the input into
segments based on when c = 0, and let j1, j2, . . . be the values of j during those segments. It is
also clear that during the i-th segment, the value of ji appears precisely 1/2 the time among the
inputs. Therefore if fj > n/2, the last segment much end with c > 0 and the value must be j.

What if there is no j such that fj > n/2? The value of j might be any input value. It might even
occur only once in the input. One could verify this using a second pass over the input.

We will consider a more general view of finding frequent elements in data streams. The idea will
be to compute an concise representation f̃ of an estimate for f satisfying:

2

• The space to represent f̃ is small.

• f̃j is “close” to fj .

• f̃j is easy to compute given f̃ .

Misra and Gries generalized that majority algorithm above to a more general method that we can
think of in this form.

Misra-Gries Algorithm
1: Initialize:
2: A← ∅, A is a set of up to k − 1 pairs (j, f̃j).
3: Process:
4: for each i do
5: if xi ∈ A then
6: f̃xi

← f̃xi
+ 1

7: else if |A| < k − 1 then
8: Add xi to A
9: f̃xi

← 1
10: else
11: for each j ∈ A do
12: f̃xi

← f̃xi
− 1

13: if f̃j = 0 then
14: Remove j from A
15: end if
16: end for
17: end if
18: end for
19: Output: f̃ ← A

20: f̃j is as given for j ∈ A, f̃j = 0 if j 6∈ A.

Claim: fj − n
k
≤ f̃j ≤ fj for all j.

Proof. We think of the algorithm as maintaining a current estimate f̃j for all j ∈ [M], where
f̃j = 0 for j 6∈ A.

Clearly f̃j ≤ fj since each occurrence of j can increase f̃j by at most 1.

Observe that we can rewrite the algorithm in equivalent form by saying that, whenever a j′ 6 inA is
encountered when |A| = k − 1, we first set f̃j′ to 1, and then subtract 1 from all k positive values
of f̃j including f̃j′ .

3

With this view, the value of f̃j is equal to fj minus the number of times that line 12 is executed with
f̃j > 0. We can allocate each such execution with specific occurrences of the k distinct elements in
the original data stream (including j) that have positive f̃ values. Therefore, the number of times
that this can occur is at most a 1/k fraction of the total length of the stream.

Corollary 1.1. A ⊇ {j : fk > n/k}

This implies that the algorithm has detected all heavy hitters, though being in the set A is no
guarantee.

Measuring the quality of f̃ estimates: For f = (f1, . . . , fM) we write the `p norm of f as:

||f ||p =

(
M∑
j=1

|fj|p
)1/p

.

Because it will sometimes be useful for expressing properties of the algorithms we consider, for
convenience we also define f−j = (f1, . . . , fj−1, fj+1, . . . , fM). Observe that ||f ||1 = n and ||f ||2
is the usual Euclidean norm. Note that the || · ||p decreases with increasing p. All the norms are
equal if there is only one element j with fj > 0. However, if the input consists of n distinct
elements then ||f ||2 =

√
n and ||f ||p approaches 1 as p→∞. Therefore approximations in terms

of || · ||p for larger p are preferred,

If we choose k = d1/εe in the Misra-Gries algorithm then we see that we obtain

Misra-Gries estimate: fj∗ − ε||f ||1 ≤ f̃j∗ ≤ fj∗ for every j∗ ∈ [M].

This is useful for determining heavy hitters.

Definition 1.2. j is a (γ, p)-heavy hitter iff

fj ≥ γ · ||f ||p.

The Misra-Gries algorithm then yields an approximate algorithm to find all (γ, 1)-heavy hitters for
any γ > ε: It will simply output all j ∈ A such that f̃j ≥ (γ − ε)n.

The resulting algorithm will report every j with fj ≥ γ · ||f ||1, it will not report any j such that
fj < (γ − ε)||f ||1 and may or may not report any j with (γ − ε)||f ||1 ≤ fj < γ · ||f ||1. Observe
that the space of this algorithm is O(1

ε
(logM +log n)). This algorithm is particularly nice because

it does not require any randomness.

4

2 Sketching for Heavy Hitters

Definition 2.1. A function sk on data streams in [M]∗ is called a sketch iff there is a space-efficient
combining algorithm COMB such that for all σ1, σ2 ∈ [M]∗, COMB(sk(σ1), sk(σ2)) = sk(σ1σ2).

We will discuss a different algorithm called the COUNT-MIN Sketch due to Cormode and Muthukr-
ishnan which is a randomized algorithm for heavy hitters. We first analyze a simple sketch on
which it will be based.

Simple Hash Count Sketch
1: Initialize: k ← d2/εe
2: C ← length k integer array, initially 0
3: Choose h : [M]→ [k] from a 2-universal family of hash functions
4: Process:
5: for each i do
6: C[h(xi)]← C[h(xi)] + 1
7: end for
8: Output: f̃ ← (C, h)

9: f̃j = C[h(j)]

We can assume without loss of generality that ε ≥ 1/n and hence log k is O(log n). The total
space of the sketch is O(1

ε
log n + logM)) since it takes O(logM + log k) = O(logM + log n)

bits to specify h and at most k log n bits to record C.

Fix j∗ ∈ [M]. C[h(j∗)] is incremented once for each i such that xi = j∗ and never is decremented;
therefore f̃j∗ = C[h(j∗)] ≥ fj∗ . Write

Yj =

{
1 if h(j) = h(j∗)

0 otherwise.

Then f̃j∗ =
∑n

i=1 Yxi
=
∑M

j=1 fjYj . Observe that Yj∗ = 1 and for j 6= j∗, E(Yj) = 1/k since h is
2-universal. Let X = f̃j∗ − fj∗ = C[h(j∗)]− fj∗ . Then

E(X) = E(f̃j∗ − fj∗) =
∑
j 6=j∗

fjE(Yj)

=
∑
j 6=j∗

fj/k

=
||f ||1 − fj∗

k
=
||f−j∗||1

k
By Markov’s inequality we have

P[X ≥ ε||f−j∗ ||1] ≤
E(X)

ε||f−j∗ ||1
=

1

εk
≤ 1

2
.

5

Therefore, any single f̃j∗ is correct within an additive ε||f−1||1 of fj∗ probability at least 1/2.

The basic idea of the COUNT-MIN Sketch will be to reduce the error by running t = dlog2(1/δ)
independent copies of the Simple Hash Sketch in parallel and taking the minimum of the answers.
Before we describe the algorithm, we will consider some extensions of the basic streaming model
that this extension can handle.

Cash Register and Turnstile models of Streaming We can imagine a short-hand expression for
multiple copies of a single element by writing (xi, ci) for integer ci to express a sequence of ci
copies of xi in the input. One can imagine this as an insertion of these ci copies. We can extend
this notion to allow deletion by allowing negative values for ci. With these notions we write

fj =
∑
i: xi=j

ci.

If the ci are all positive, then this extension is known as the cash register model; if both positive
and negative values are possible, it is known as the turnstile model.

The COUNT-MIN Sketch will work for the cash register model and indeed any input in the turnstile
model in which all fj are non-negative.

The COUNT-MIN Sketch Algorithm
1: Initialize:
2: k ← d2/εe
3: t← dlog2(1/δ)e
4: C ← t× k integer array, initially 0
5: Choose h1, . . . ht : [M]→ [k] independently from a 2-universal family of hash functions
6: Process:
7: for each i do
8: for s = 1 to t do
9: C[s, hs(xi)]← C[s, hs(xi)] + ci

10: end for
11: end for
12: Output: f̃ ← (C, h1, . . . , ht)

13: f̃j = min{C[s, hs(j)] : s = 1, . . . , t}

The total space of the sketch is O(log(1/δ)
ε

(log n+ logM)).

Fix j∗ ∈ [M] and assume that fj ≥ 0 for all j. Write Xs = C[s, hs(j
∗)] − fj∗ for s = 1, . . . , t.

Since each fj ≥ 0, the contribution of every element j other than j∗ to C[s, hs(j
∗)] is non-negative,

we have Xs ≥ 0 for all s and hence f̃j∗ ≥ fj∗ . Observe that the expectation of each Xs is precisely

6

the same as that of X for the simple hash algorithm, namely E(Xs) = ||f−j∗||1/k. Therefore

P[f̃j∗ − fj∗ ≥ ε||f−j∗||1] = P[min(X1, . . . , Xt) ≥ ε||f−j∗||1]

= P[
t∧

s=1

(Xs ≥ ε||f−j∗ ||1)]

=
t∏

s=1

P[Xs ≥ ε||f−j∗||1]

≤ 1

2t
≤ δ.

Therefore fj∗ ≤ f̃j∗ ≤ fj + ε||f−j∗||1 except with probability δ.

Note that the approximation error in this estimate is comparable to that of the Misra-Gries algo-
rithm (except for the minor difference in removing the occurrences of the element from the error
bound and the fact that it is an over-estimate rather than an under-estimate). Note also that the
above error is on a per-value basis rather than overall. In order to get an overall probability of error
at most δ one would need to use t = log2(1/δ) + log2M .

The main reason one might prefer the COUNT-MIN Sketch algorithm is that it is a linear sketching
algorithm that allows deletions as well as insertions (though it does require that the final frequen-
cies are all non-negative).

7

	Heavy Hitters in Data Streams
	Sketching for Heavy Hitters

