CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 3: Estimating the Number of Distinct Elements
April 7,2014

Lecturer: Paul Beame Scribe: Paul Beame

1 A constant factor approximation algorithm for Fj

We begin by analyzing the basic estimation algorithm we saw last time.

Basic F{, Estimation Algorithm

Initialize: Choose h : [M] — [M] from H a pairwise independent family of hash functions
z+0
Process:
for each i do
z « max(zeroes(h(z;), z)
end for
Output:
2e+1/2 (geometric mean of 27 and 2**1)

It takes 2 log, M bits to represent h and log log n bits for z so the total space is O(log M +log logn).

We will see that with constant probability, the output of this algorithm is between Fy/3 and 3[;
and then see how to improve the success probability to 1 — ¢ for any o > 0.

Analysis Let z* = the final value of z.

For each j € [M] and integer r > 0, let
P 1 if zeroes(h(j)) > r
710 otherwise

and let

which represents the total number of distinct input values whose hashes have at least r trailing
zeroes. Observe that Y, = 0 < z* < r — 1. Then

E(X, ;) = Plzeroes(h(j)) > r] = P[2" divides h(j)] = 1/2"

1

since h(j) is uniformly random. Therefore
E(Y,) = Y EX.) =) 1/27=F/2.
it 150 §:45>0

Furthermore, Y, is the sum of X, ; which are pairwise independent because of the pairwise inde-
pendence of h, hence Var(Y,) < E(Y,) = Fy/2". Let F = 2°"*1/2 be the estimate produced by
the algorithm. We will argue that Fy/3 < Fy < 3F; with constant probability.

Fy < 3Fy: Let a be the smallest integer such that 20t/2 > 3F;. Then

= P[Y, > 0]

=P[Y, > 1]

< E[Y,] by Markov’s inequality

= Fp/2°

<V?2/3~ 471... by definition of a

Fy > Fy/3: Let b be the largest integer such that 20*/2 < /3. Then

P[Fy < Fy/3] = P[z" < b]

= P[Yp11 = 0]

< Pl[Yos1 — E(Yor1)| = E(Yo41)]
Var(Yp1)
E(Yy+1)?
< 1/E(Yp41)
— 2b+1/F0
<V/2/3~ A71... by definition of b

IN

by Chebyshev’s Inequality

The guarantee for success is very weak, little more than 5% of the time. However we can easily
modify the above algorithm to obtain success with probability at least 1 — ¢ for any 6 > 0.

Median Trick We use the fact that each of the two failure conditions happens with probability
bounded strictly below 1/2 to obtain our desired algorithm:

Run k = O(log(1/)) independent copies of the basic F estimation algorithm to yield estimates
Fo1, ..., I and then output [as the median of these answers.

2

IP’[FO > 3Fp] is the probability that at least k/2 of the estimates Fy; is at least 3F}. Since these are
independent trials, P[Fy > 3[] is at most the probability that the binomial distribution B(k, v/2/3)
has value at least k£ /2, a constant factor larger than its expectation. By the Chernoff Bound, this is
at most e~“* for some constant ¢ > 0. For k = 2 1n(2/4) this is at most 6,/2.

The same analysis applies to show P[F, < Fy/3] < 6, yielding a total failure probability at most
J.

The total space used by the algorithm is now O(log(1/d)(log M + loglogn)).

2 A1+ ¢ factor approximation algorithm for Fj

Observe that the Markov’s inequality analysis of the upper bound on the probability of z being at
least 3 times Fj is actually asymptotically tight. In particular, prior to the median trick, it only takes
a single bad event where the hash of an element hashes has too many zeroes to raise the estimate.
(In fact, this estimate will be a factor of K larger than Fj, with probability 2(1/K’).) Moreover, the
smallest granularity that the estimate can change is only a factor of 2.

The algorithm, due to Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan, that we will describe
for obtaining a 1 £ ¢ factor approximation will be somewhat less aggressive in incrementing z — it
will only increment 2 with the evidence of 2(1/£?) elements — and will keep track of more detailed
information about the hashes that have close to the maximum number of zeroes.

We first describe a variant of this algorithm that is a bit simpler to analyze but is less space efficient.

Large space 1 + ¢ Factor [, Estimation Algorithm
Initialize:
Choose h : [M] — [M] from H a pairwise independent family of hash functions
z+0
B«
Process:
for each i do
if zeroes(h(z;)) > = then
B «— B U {(z;,zeroes(h(x;))}
end if
while |B| > ¢/£? do
z—z+1
Remove all (z;, 3) where 5 < z from B
end while
end for
Output: Fy = | B|2%.

Note: The constant c in this algorithm will be a large constant determined by the analysis. In this
version it is unnecessary to store the number of zeroes in h(x;) but we do so to make it closer to
the small space version.

It is easy to see that the space required by this algorithm is O(Z; (log M + loglogn)) primarily in
order to store the set B.

Analysis Let 2* = the final value of z. Define X, , and Y, as in the case of the basic algorithm.
As before we have E(Y,) = Fy/2" and Var(Y,) < E(Y;) = Fy/2". Observe that the value of |B]
when the algorithm finishes is precisely Y, so the output Iy = Y,.2°".

‘We consider cases based on the value of z*.

If z* = 0 then no elements were ever removed from B = Y; so the output Y2° = Y}, is precisely
F{ and there is no error.

Now suppose that z* > 1. Let F'AI L be the event that the algorithm produces an output Fy that is
not within a 1 £ ¢ factor of Fj. By definition,

FAIL & |EFy — Fy| > €F,
= |Y;«*2z* — F0| > ek
& Yo — Fy /27| > eFy /27
Since E(Y,.) = Fy/2" for each r, the task about bounding the probability of F"AI L looks a bit like
bounding the deviation of Y, from its expected value. However, the choice of z* is not fixed and

so [E(Y,~) will not in general be F,/2*" . Instead, we break things up into cases depending on the
value of z* and use the value of F{, to determine how we handle these cases.

Let s be the unique integer such that
12 < Ey - 24
52 — 9s 52 :

We will choose ¢ large enough so that it will be very unlikely z* > s and handle the cases when

z* < s using our analysis based on the deviation. Since 1 < 2* < log, M

logy M 5F0
P[FAIL] = Y P[(Y, - —| > =) A (2 =7)]
r=1
s—1 logy M
FQ €F0 «
<SRV, - 20> Loy 3 Bl =]
r=1 r=s

s—1
F F
= DBl -)=)+ Bl 2

F ek
- ZP[M — 5| 2 51+ Pl > /€]

which by Chebyshev’s inequality and by Markov’s inequality is

s—1

Var(y, E Y._1
3 (Ys—1)

= 2R, /zr)

s—1 p
S Z 2 F0€
—1 €2F0 251
28 F0€2
+ .z
€2F0 251
< 1/12 +48/c

since Fy/2% > 12/&? for the first term and F,/2° < 24/£? for the second. By choosing ¢ = 576,
the second term is also at most 1/12 and the total failure probability is at most 1/6.

<

In the small space algorithm, instead of storing each input x; in B, we only store a hash of z; using
a separate pairwise independent hash function to a small set. A key observation is that, over the
course of the algorithm execution, there are very few entries that will ever need to be stored: There
are only log, M values of 2 and at most c/e? different input values that will be hashed for each
value of z. This yields a total of at most K = cz~?log, M values that will ever be hashed by this
function over the course of the whole execution.

Lemma 2.1. Let g be chosen from a 2-universal family of hash functions G that matp [M] —
l[aK?]. For any subset A C [M| with |A| < K,

1
Plg collides on A] < —.
2a
Proof. By the 2-universal property, for all i € j € [M],
1
Plg(i) = = .
9(1) = (] = —=

Therefore

IP[g collides on A] < E(# of collisions of g on pairs in A)

()t .

IN

The resulting algorithm is now:

1 &£ ¢ Factor F{ Estimation Algorithm
Initialize:
Choose h : [M] — [M] from H a pairwise independent family of hash functions
Choose g : [M] — [K'] from G a 2-universal family of hash functions where K’ = [3c¢?c~*log® M|
z 0
B«
Process:
for each i do
if zeroes(h(z;)) > z then
B — BU{(g(z;), zeroes(h(x;))}
end if
while |B| > ¢/£? do
z—2z+1
Remove all («,) where 3 < z from B
end while
end for
Output: F, = |B|22.

Except with failure probability of at most 1/6 over the choice of the function g, the estimate pro-
duced by this algorithm will be the same as that produced by the large space version. Combined
with the analysis of that version this yields success probability at least 2/3. The space has been
reduced to O(log M +

fracle®(log1/e + loglog M + loglogn)).

This algorithm has success probability of only 2/3. We again compute the median of O(log(1/4))
independent trials run in parallel to obtain a 1 &+ ¢ factor estimate of F{, with probability at least
1 — 6. The final space bound is

O(log(1/6(log M + fracle*(log1/e + loglog M + loglogn))).
This bound is very close to the theoretical optimum. Even to achieve success probability 2/3, one

needs space €(1/e? + log M). An algorithm achieving this was developed by Kane, Nelson, and
Woodruff in a paper at PODS 2010. (This paper would be a good candidate for a presentation.)

The probably of estimating F{ is useful in practice. Next time we will briefly discuss a simple
practical algorithm HYPERLOGLOG due to Flajolet et al., which uses similar ideas but makes
stronger assumptions about the hash function in order to get faster execution.

	A constant factor approximation algorithm for F0
	A 1 factor approximation algorithm for F0

