
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 3: Estimating the Number of Distinct Elements
April 7, 2014

Lecturer: Paul Beame Scribe: Paul Beame

1 A constant factor approximation algorithm for F0

We begin by analyzing the basic estimation algorithm we saw last time.

Basic F0 Estimation Algorithm
Initialize: Choose h : [M ]→ [M ] from H a pairwise independent family of hash functions
z ← 0
Process:
for each i do

z ← max(zeroes(h(xi), z)
end for
Output:
2z+1/2 (geometric mean of 2z and 2z+1)

It takes 2 log2M bits to represent h and log log n bits for z so the total space isO(logM+log log n).

We will see that with constant probability, the output of this algorithm is between F0/3 and 3F0

and then see how to improve the success probability to 1− δ for any δ > 0.

Analysis Let z∗ = the final value of z.

For each j ∈ [M ] and integer r ≥ 0, let

Xr,j =

{
1 if zeroes(h(j)) ≥ r

0 otherwise

and let
Yr =

∑
j: fj>0

Xr,j

which represents the total number of distinct input values whose hashes have at least r trailing
zeroes. Observe that Yr = 0⇔ z∗ ≤ r − 1. Then

E(Xr,j) = P[zeroes(h(j)) ≥ r] = P[2r divides h(j)] = 1/2r

1



since h(j) is uniformly random. Therefore

E(Yr) =
∑

j: fj>0

E(Xr,j) =
∑

j:fj>0

1/2r = F0/2
r.

Furthermore, Yr is the sum of Xr,j which are pairwise independent because of the pairwise inde-
pendence of h, hence V ar(Yr) ≤ E(Yr) = F0/2

r. Let F̃0 = 2z∗+1/2 be the estimate produced by
the algorithm. We will argue that F0/3 < F̃0 < 3F0 with constant probability.

F̃0 < 3F0: Let a be the smallest integer such that 2a+1/2 ≥ 3F0. Then

P[F̃0 ≥ 3F0] = P[z∗ ≥ a]

= P[Ya > 0]

= P[Ya ≥ 1]

≤ E[Ya] by Markov’s inequality
= F0/2

a

≤
√

2/3 ≈ .471... by definition of a

F̃0 > F0/3: Let b be the largest integer such that 2b+1/2 ≤ F0/3. Then

P[F̃0 ≤ F0/3] = P[z∗ ≤ b]

= P[Yb+1 = 0]

≤ P[|Yb+1 − E(Yb+1)| ≥ E(Yb+1)]

≤ V ar(Yb+1)

E(Yb+1)2
by Chebyshev’s Inequality

≤ 1/E(Yb+1)

= 2b+1/F0

≤
√

2/3 ≈ .471... by definition of b

The guarantee for success is very weak, little more than 5% of the time. However we can easily
modify the above algorithm to obtain success with probability at least 1− δ for any δ > 0.

Median Trick We use the fact that each of the two failure conditions happens with probability
bounded strictly below 1/2 to obtain our desired algorithm:

Run k = Θ(log(1/δ)) independent copies of the basic F0 estimation algorithm to yield estimates
F̃0,1, . . . , F̃0,k and then output F̃0 as the median of these answers.

2



P[F̃0 ≥ 3F0] is the probability that at least k/2 of the estimates F0,i is at least 3F0. Since these are
independent trials, P[F̃0 ≥ 3F0] is at most the probability that the binomial distributionB(k,

√
2/3)

has value at least k/2, a constant factor larger than its expectation. By the Chernoff Bound, this is
at most e−ck for some constant c > 0. For k = 1

c
ln(2/δ) this is at most δ/2.

The same analysis applies to show P[F̃0 ≤ F0/3] ≤ δ, yielding a total failure probability at most
δ.

The total space used by the algorithm is now O(log(1/δ)(logM + log log n)).

2 A 1± ε factor approximation algorithm for F0

Observe that the Markov’s inequality analysis of the upper bound on the probability of z being at
least 3 times F0 is actually asymptotically tight. In particular, prior to the median trick, it only takes
a single bad event where the hash of an element hashes has too many zeroes to raise the estimate.
(In fact, this estimate will be a factor of K larger than F0 with probability Ω(1/K).) Moreover, the
smallest granularity that the estimate can change is only a factor of 2.

The algorithm, due to Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan, that we will describe
for obtaining a 1± ε factor approximation will be somewhat less aggressive in incrementing z – it
will only increment z with the evidence of Ω(1/ε2) elements – and will keep track of more detailed
information about the hashes that have close to the maximum number of zeroes.

We first describe a variant of this algorithm that is a bit simpler to analyze but is less space efficient.

Large space 1± ε Factor F0 Estimation Algorithm
Initialize:
Choose h : [M ]→ [M ] from H a pairwise independent family of hash functions
z ← 0
B ← ∅
Process:
for each i do

if zeroes(h(xi)) ≥ z then
B ← B ∪ {(xi, zeroes(h(xi))}

end if
while |B| ≥ c/ε2 do

z ← z + 1
Remove all (xi, β) where β < z from B

end while
end for
Output: F̃0 = |B|2z.

3



Note: The constant c in this algorithm will be a large constant determined by the analysis. In this
version it is unnecessary to store the number of zeroes in h(xi) but we do so to make it closer to
the small space version.

It is easy to see that the space required by this algorithm is O( 1
ε2 (logM + log log n)) primarily in

order to store the set B.

Analysis Let z∗ = the final value of z. Define Xx,r and Yr as in the case of the basic algorithm.
As before we have E(Yr) = F0/2

r and V ar(Yr) ≤ E(Yr) = F0/2
r. Observe that the value of |B|

when the algorithm finishes is precisely Yz∗ so the output F̃0 = Yz∗2
z∗ .

We consider cases based on the value of z∗.

If z∗ = 0 then no elements were ever removed from B = Y0 so the output Y02
0 = Y0 is precisely

F0 and there is no error.

Now suppose that z∗ ≥ 1. Let FAIL be the event that the algorithm produces an output F̃0 that is
not within a 1± ε factor of F0. By definition,

FAIL⇔ |F̃0 − F0| ≥ εF0

⇔ |Yz∗2
z∗ − F0| ≥ εF0

⇔ |Yz∗ − F0/2
z∗| ≥ εF0/2

z∗

Since E(Yr) = F0/2
r for each r, the task about bounding the probability of FAIL looks a bit like

bounding the deviation of Yz∗ from its expected value. However, the choice of z∗ is not fixed and
so E(Yz∗) will not in general be F0/2

z∗ . Instead, we break things up into cases depending on the
value of z∗ and use the value of F0 to determine how we handle these cases.

Let s be the unique integer such that

12

ε2
≤ F0

2s
<

24

ε2
.

We will choose c large enough so that it will be very unlikely z∗ ≥ s and handle the cases when

4



z∗ < s using our analysis based on the deviation. Since 1 ≤ z∗ ≤ log2M

P[FAIL] =

log2 M∑
r=1

P[(|Yr −
F)

2r
| ≥ εF0

2r
) ∧ (z∗ = r)]

≤
s−1∑
r=1

P[|Yr −
F0

2r
| ≥ εF0

2r
] +

log2 M∑
r=s

P[z∗ = r]

=
s−1∑
r=1

P[|Yr −
F0

2r
| ≥ εF0

2r
] + P[z∗ ≥ s]

=
s−1∑
r=1

P[|Yr −
F0

2r
| ≥ εF0

2r
] + P[Ys−1 > c/ε2]

which by Chebyshev’s inequality and by Markov’s inequality is

≤
s−1∑
r=1

V ar(Yr)

(εF0/2r)2
+

E(Ys−1)

(c/ε2)

≤
s−1∑
r=1

2r

ε2F0

+
F0ε

2

c2s−1

<
2s

ε2F0

+
F0ε

2

c2s−1

< 1/12 + 48/c

since F0/2
s ≥ 12/ε2 for the first term and F0/2

s < 24/ε2 for the second. By choosing c = 576,
the second term is also at most 1/12 and the total failure probability is at most 1/6.

In the small space algorithm, instead of storing each input xi in B, we only store a hash of xi using
a separate pairwise independent hash function to a small set. A key observation is that, over the
course of the algorithm execution, there are very few entries that will ever need to be stored: There
are only log2M values of z and at most c/ε2 different input values that will be hashed for each
value of z. This yields a total of at most K = cε−2 log2M values that will ever be hashed by this
function over the course of the whole execution.

Lemma 2.1. Let g be chosen from a 2-universal family of hash functions G that matp [M ] →
[aK2]. For any subset A ⊆ [M ] with |A| ≤ K,

P[g collides on A] ≤ 1

2a
.

Proof. By the 2-universal property, for all i ∈ j ∈ [M ],

P[g(i) = (j)] =
1

aK2
.

5



Therefore

P[g collides on A] ≤ E(# of collisions of g on pairs in A)

≤
(
K

2

)
1

aK2
≤ 1

2a
.

The resulting algorithm is now:

1± ε Factor F0 Estimation Algorithm
Initialize:
Choose h : [M ]→ [M ] from H a pairwise independent family of hash functions
Choose g : [M ]→ [K ′] fromG a 2-universal family of hash functions whereK ′ = d3c2ε−4 log2Me
z ← 0
B ← ∅
Process:
for each i do

if zeroes(h(xi)) ≥ z then
B ← B ∪ {(g(xi), zeroes(h(xi))}

end if
while |B| ≥ c/ε2 do

z ← z + 1
Remove all (α, β) where β < z from B

end while
end for
Output: F̃0 = |B|2z.

Except with failure probability of at most 1/6 over the choice of the function g, the estimate pro-
duced by this algorithm will be the same as that produced by the large space version. Combined
with the analysis of that version this yields success probability at least 2/3. The space has been
reduced to O(logM +
frac1ε2(log 1/ε+ log logM + log log n)).

This algorithm has success probability of only 2/3. We again compute the median of O(log(1/δ))
independent trials run in parallel to obtain a 1 ± ε factor estimate of F0, with probability at least
1− δ. The final space bound is

O(log(1/δ(logM + frac1ε2(log 1/ε+ log logM + log log n))).

This bound is very close to the theoretical optimum. Even to achieve success probability 2/3, one
needs space Ω(1/ε2 + logM). An algorithm achieving this was developed by Kane, Nelson, and
Woodruff in a paper at PODS 2010. (This paper would be a good candidate for a presentation.)

6



The probably of estimating F0 is useful in practice. Next time we will briefly discuss a simple
practical algorithm HYPERLOGLOG due to Flajolet et al., which uses similar ideas but makes
stronger assumptions about the hash function in order to get faster execution.

7


	A constant factor approximation algorithm for F0
	A 1 factor approximation algorithm for F0

