
CSE 522: Sublinear (and Streaming) Algorithms Spring 2014

Lecture 2: Hashing, Estimating the Number of Distinct Elements
April 2, 2014

Lecturer: Paul Beame Scribe: Paul Beame

In the last class we saw that by sample s = O(
√
n/ε) elements and checking whether they contain

a duplicate, we can distinguish between whether the input from [M]n is all distinct or has< (1−ε)n
distinct elements.

We complete the analysis by considering the time and space required to do the computation. One
could store the entire set of samples and sort it to check duplicates in time O(s log s), or, more
generally, use some form of dictionary data structure that allows dynamic insertions in order to
detect duplicates as soon as they are sampled. This can all be done in Õ(

√
n/ε) time and space

(where we use Õ to hide logarithmic factors). In each of these cases one will need at least log2

(
M

s−1

)
bits which is Ω(s log(M/s) in order to represent which (distinct) values have already been seen
before the last input is read. In particular, this is Ω(

√
n/ε).

In the case of data stream algorithms that read the inputs once in order, we will see that we can
use much less than Θ̃(

√
n/ε) space to do much more, namely approximate the number of distinct

elements within a 1 ± ε multiplicative factor. Observe that such an algorithm will distinguish
between n and < (1 − ε)n. A key tool for this algorithm and many other data stream algorithms
will be to use random hash functions so we review their properties.

1 Random Hash Function Families

We will consider families of functions H such that every h ∈ H is of the form h : [M]→ {0, 1}`.
For convenience we assume thatM = 2m for some integerm and identify [M] with {0, 1}m. Every
such set H induces a uniform distribution on its members and we use h ∼ H to denote that h is
chosen uniformly and randomly from H .

Definition 1.1. Hash function family H is uniform iff

Ph∼H [h(j) = v] =
1

2`
for all j ∈ [M], v ∈ {0, 1}`.

Further, H is 2-universal iff

Ph∼H [h(i) = h(j)] =
1

2`
for all i 6= j ∈ [M].

1

H is pairwise independent iff H is both uniform and 2-universal.
More generally, H is k-wise independent iff for every A ⊆ [M] with |A| ≤ k and all (vj)j∈A with
vj ∈ {0, 1}`,

Ph∼H [h(j) = vj, for all j ∈ A] =
1

2`·|A| .

(Observe that the property for |A| = k implies the property for all smaller sets.)

The following are some examples of hash function families for k-wise independence.

First consider the case of h : [M] → [M]; i.e., h : {0, 1}m → {0, 1}m. Let F2m be the finite field
of 2m elements1 Define H to consist of all h : F2m → F2m given by degree k − 1 polynomials:

h(x) = α0 + α1x+ · · ·+ αk−1x
k−1

for α0, . . . , αk−1 ∈ F2m where the computation is over F2m . Observe that it takes km = k log2M
bits to represent an element of H .

To see that the family H is pairwise independent, suppose that A = {j1, . . . , jk} and let v1, . . . , vk

be any elements of F2m . Observe that the simultaneous equations h(j1) = v1, . . . , h(jk) = vk are
equivalent to the matrix equation

1 j1 j2
1 · · · jk−1

1

1 j2 j2
2 · · · jk−1

2

· · · · · · ·
...

...
...

1 jk j2
k · · · jk−1

k




α0

α1

α2
...

αk−1

 =


v1

v2

·
...
vk

 .

The matrix on the left is called a Vandermonde matrix and has determinant equal to
∏

i 6=i′(ji− ji′)
which is non-zero since all the ji are distinct in the field. Therefore using its inverse, for any
choice of v1, . . . , vk, we can solve for a unique choice of the unknowns α0, . . . , αk−1 that satisfies
the equation. Therefore the probability that the equation is satisfied is precisely 1/2mk which is
what we require.

Notice that in the case of pairwise independence we have a hash function of the familiar form
h(x) = ax + b and so this is a natural generalization to k-wise independence of our usual con-
structions. Also, observe that if we want a k-wise independent construction for ` < m then we can
simply ignore m− ` bits of the output.

One very nice simple way that we can construct a 2-universal hash function family from {0, 1}n →
{0, 1}`, given by Dietzfelbinger et al., is to identify the input with an integer and use ordinary

1The field Fp for prime p consists of the integers modulo p with ordinary addition and multiplication. The elements
of F2m are not defined using mod in the same way. They are a vector space of polynomials of degree m − 1 over
F2 and are described using any irreducible polynomial P of degree m over F2. Operations in F2m are polynomial
addition modulo 2 and polynomial multiplication taken modulo P and modulo 2.

2

integer multiplication: That is, we choose a to be an (m + `)-bit integer and b to be an m-bit
integer. If x is an m-bit integer, then the product ax + b will be (2m + `)-bit integer. The hash
function value consists of the middle ` bits of this output.

We will very frequently use 2-universal and pairwise independent hash function families but we
will see that larger independence will also sometimes be useful.

Pairwise independence The following proposition, which we will frequently apply together
with Chebyshev’s inequality, is a key to why pairwise independence is so useful:

Proposition 1.2. If X = X1 + · · ·+Xn and the Xi are pairwise independent then

V ar(X) = V ar(X1) + · · ·+ V ar(Xn).

Further, if each Xi ∈ {0, 1} then
V ar(X) ≤ E(X).

Proof. By definition,

V ar(X) = E(X2)− E(X)2

= E((X1 + · · ·+Xn)2)− (E(X1) + · · ·E(Xn))2

= E(
∑
i,j

XiXj)−
∑
i,j

E(Xi)E(Xj)

=
∑
i,j

(E(XiXj)− E(Xi)E(Xj))

=
∑

i

(E(X2
i)− E(Xi)

2) +
∑
i 6=j

(E(XiXj)− E(Xi)E(Xj))

=
∑

i

(E(X2
i)− E(Xi)

2) by pairwise indepence

=
∑

i

V ar(Xi).

Now if each Xi ∈ {0, 1}, then∑
i

(E(X2
i)− E(Xi)

2) =
∑

i

(E(Xi)− E(Xi)
2) ≤

∑
i

E(Xi) = E(X).

Thus, in particular, if X is the sum of pairwise independent indicator random variables, Cheby-
shev’s inequality implies that

P[|X − E(X)| ≥ c
√

E(X)] ≤ V ar(X)

c2E(X)
≤ 1/c2,

which is a fairly sharp bound on the deviation of X from its expectation.

3

2 Estimating the Number of Distinct Elements in a Data Stream

For a data stream x1, . . . , xn ∈ [M] we will find it useful to define the frequency vector for x,

f = (f1, . . . , fM) where fj = #{i | xi = j}.

The number of distinct elements in the stream is therefore #{j | fj > 0}.

Another way to express the number of distinct elements is as

F0 =
M∑

j=1

f 0
j

where we take 00 = 0. We will show how to estimate F0 for a data stream using roughly log-
arithmic space. Later we will show a (1 ± ε) factor approximation, but we begin with a simple
algorithm that achieves a constant-factor approximation.

Basic Idea If we apply a random hash function h : [M]→ [M] to the elements of the input then
their values will look like roughly F0 random elements of M . The algorithm can then maintain a
simple property of the values seen in order to estimate the value of F0. The property suggested by
[Flajolet-Martin 85] is to maintain the largest number of leading (or trailing) 0’s seen in the input
since the probability of seeing a pattern of t such 0’s is 2−t. We will see that pairwise independence
is enough. ([Alon-Matias-Szegedy 96] gave a small variant of this using the smallest hash value
seen.)

For j ∈ [M], define zeroes(j) = max{r | 2r divides j}, which is the number of trailing 0’s in the
binary expansion of j.

Basic F0 Estimation Algorithm
Initialize: Choose h : [M]→ [M] from H a pairwise independent family of hash functions
z ← 0
Process:
for each i do

z ← max(zeroes(h(xi), z)
end for
Output:
2z+1/2 (geometric mean of 2z and 2z+1)

It takes 2 log2M bits to represent h and log log n bits for z so the total space isO(logM+log log n).
We will see that with constant probability, the output of this algorithm is between F0/3 and 3F0

and then see how to improve the success probability to 1− δ for any δ > 0.

4

	Random Hash Function Families
	Estimating the Number of Distinct Elements in a Data Stream

