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CSE522, Winter 2011, Learning Theory Lecture 8 - 01/27/2011

Vapnik-Chervonenkis Theory
Lecturer: Ofer Dekel Scribe: Amol Kapila

Recap

. With probability at least 1 — 4, if £ € [0, ], then Vh € H, £(h; D) < £(h;S) + Rpn(£o H) + ¢4/ logz(ﬁ.

A bound like this immediately implies a bound on the excess risk of the empirical risk minimizer. We
prove this by proving a stronger, uniform bound on the excess risk across all h € H.

. With high probability, Ry, (£ o H,S) ~ Ry, (£ o H), where

2 m
Rm@ o H) = EES]EU EEEZO‘lf(h, (55'7,7yz))
=1

The empirical Rademacher complexity

is the same thing without the expectation over S.

. In the case of binary classification () = {1, —1}, £ = error indicator),

Em(ﬂo H,S)=1-2min/(h;S"),
heH

where S’ = {(z;,0:)}"; and 0; = £1 with probability 1/2 each.

IR X = R, €= L(yh(z)) or £(h(x) —y), and £ is A-Lipschitz in h(x), then R, (¢ o H) < AR, (H).

The same property holds for the empirical Rademacher average: R, (Lo H,S) < AR, (H,S).

. Class of linear hypotheses with norm < B: H = {h,, = (w, ) | ||w||2 < B}. In this case,

~ 2B | &
Ry (H,S) = — ZH%—II%-
i=1

m

If D is such that ||z]| < X, then Ry, (H) < 2BX/+/m.

. If H is the convex hull of H, then R,,(H) = R,,(H). (Homework problem).

VC Theory

Binary Classification: Y = {1, —1}, £ is the 0-1 loss (a.k.a., error indicator loss).
VC Theory is a combinatorial theory, based on discrete math.

Observation 1. We only need to worry about R, (H), not R, (£ o H), if we have 0-1 loss.

Observation 2. If S is a sample of m examples, then there are at most 2™ vectors of the form (h(z1), h(z2), ..., h(xm)).
We will explore how many ways can we label a concrete dataset.



Fact (e®+e~®)/2 < e®/2. Proof by Taylor expansion of the exponential function.

Theorem 3. (Massart’s Finite Class Lemma) Suppose A CR™, |A| < 00, and Va € A, ||lall2 < p. Then,

~ 2 i 2
R, (H,S) = EEJ I;leaj(Za,;ai < Ep\/Qlog\AL
i=1

Here, each a € A is a vector of the form a = (h(x1), h(2), ..., h(xm)). So, if H can label our set in only a
finite number of ways, then the empirical Rademacher average is bounded by the expression on the right-hand

side of the inequality.

Proof. For each s > 0,

m
exp (sEa max Z aiai> < [Jensen’s inequality and the convexity of exp(-)]
ac
i=1

Hence, we can conclude that

m
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1=

= [monotonicity of exp(-)]
m

= E, I;leaj( exp <5 z; o az-)
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< E, Z ﬁ exp(sa;o;)

acAi=1
= [independence of o;’s]

= Z ﬁ E,, exp (sa;o;)
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. 1 s2p? log|A| | sp?
E, I;leaj(izzlaiai < glog (|A exp ( 5 = - + -

Plug in s = /2log |A|/p to get

2 " 2
—E, a; < —py/2log |Al.
m Ifeafgaa _mp 0g| |



O

Observation 4. So, we now have a bound on the empirical Rademacher average. Basically, to bound the
empirical Rademacher average, we want to limit the size of |A|.

Definition 5. The growth function of H is defined as gg(m) = maxg [{(h(x1),...,h(@m)) her|. Because
we have a set, labelings do not get counted twice. Note that gg(m) < 2™.

Fact 6. We can restate the result in Theorem 3 in terms of the growth function as follows: If H is a
hypothesis space of binary classifiers, then

2 2
R(H) < E\/ZloggH(m)\/ﬁz ﬁ\/ 2log gr (m).
So, for all S,
R(H,S) <2 ZbggTH(m).

Observation 7. If gy (m) = 2™, the bound is a constant, not diminishing as O(1/y/m).

3 Examples

If H is a hypothesis class of binary classifiers, in how many different ways can H label S?7 This is moving
from linear algebra to combinatorics.

Example 1 H = linear classifiers in R?. If m = 2, then gy (m) = 4 = 2™. The figures below provide the
justification for this.

XX



Example 2 H = axis-parallel boxes in R2.

An example of an axis-parallel box. Points inside the box are labeled positive, and points outside the box
are labeled negative.

If m = 1, then clearly gg(m) = 2 = 2™. If m = 4, then gy (m) = 16 = 2™, as show using the figures
below. Fach figure abstractly represents one or more possible labelings (the multiplicity is shown as kz,
where k is the multiplicity).
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One can also show that gg(5) = 31 < 2°.

Definition 8. If H can label S in all 2™ ways (m = |S|), then we say that H shatters S. So, we say that
azis-parallel boxes shatter 4 points, but not 5.

Definition 9. The VC Dimension of a class H is VCdim(H) = max{|S| | H shatters S}.



Example 1 H = intervals in R. gy (1) =2 =21, gy (2) =4 = 22, gy (3) < 23, so H cannot shatter 3
points, as the example below shows.

A labeling of three points in R that cannot be generated by intervals in R.

4 Useful Lemmas

Lemma 10. (Sauer) Let H be a hypothesis class of binary classifiers with VCdim(H) = d. Then,

Lemma 11. (Stirling)

Proof.
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Hence,



