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Linear Hypothesis Classes

Lecturer: Ofer Dekel Scribe: Yanping Huang

1 Review: Rademacher’s Complexity

Theorem 1. Let the loss functionl € [0, ], and S be the sample set drawn from distribution D with |S| = m.
Then Y6 > 0 and Vh € H, with probability at least 1 — §, we have

log(1
1(h;8) = 1(1h; D)| < e(8) = R(LoH) + ¢ M (1)
m
where the Rademacher complexity
2 m
Rip(loH) = EESEE[I}%&?}{(;@I(}% (zi,9i))] (2)

1.1 Remarks on Rademacher’s complexity

e Since 0; € {£1}, we can rewrite the Rademacher’s complexity as:

2
Rm(l o H) = *EsEg[maX( E Zi - E ll)]
m her iG{iZU‘:l} ie{i:a-:—l}

The random vector & partitioned the sample S into two disjoint sets. The Rademacher’s complexity
estimates how much difference between the total losses of two random-assigned disjoint sets can a
hypothesis make.

e We can rewrite | = {li,...,lm}. Then the inner product < &, ['> is a measurement of the correlation
between two vectors ¢ and I. The Rademacher’s complexity measures how well correlated the most-
correlated hypothesis is to a random labeling of points in S.

e When the loss function is a constant independent of examples, [ = 1. We have Ez) . 0; x 1 = 0. In
this case, R, (loH) = 0.

o If 7 = {h}, then R,,(loH) =0

e In literature, sometimes the definition of Rademacher’s complexity is written as

m
E oil;
i=1

However, this definition is inferior since it is a higher upper bound than the definition in Eq 2. In some
special cases such as H = {h} and [ = 1, R%"(l o H) > 0. And the absolute value in the definition is
generally harder to work with.

] 3)
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Ro'(loH) = —EsEz| max

e Gaussian complexity is a similar complexity with similar physical meanings, and can be obtained from
the previous complexity using with o; ~ N(0,1).



1.2 Special Case: Binary Classification

In this case, y € {+1,—1}, I is 0-1 loss. & = {o1,...,0n} is a random vector with Pr(o; = 1) with
probability 1/2, and Pr(o; = 0) = 0 with probability 1/2. 8" = {(;,0:)}. Then V4 > 0, with probability
at least 1 — 8, we have Ry, (loH,S) <1 — 2minyey I(h; S').

Note that R, (I o H,S) becomes minimum when I(h; S’) = 1/2 for some h € H. That means that h can
only predict random labels with probability 1/2. In the worse case where ﬁm(l o H,S) becomes maximum,
we have [(h,S’) = 0, when h can perfectly predict any random labels. In the average case, we expect a
“g00d” hypothesis class H has the property that R, (1o H,S) ~ O(L).

m

2 Linear hypothesis classes

In these classes, the hypotheses are parametrized by a linear vector w such that h,(z) =< w,x > where
w € R™ and x € R™.

e Regression problems, y € R. The loss function is a function of the difference between prediction and y:
1(h; (z,y)) = l(h(z) —y). For square loss, I(h; (z,y)) = (h(z) —y)*. In general I(h; (z,y)) = |h(z) —y|?
for p > 0.

e Confidence rated binary classification (margin based confidence). Here y € R, sign(h(z)) represents
the binary label of the example x, and |h(z)| represents the corresponding confidence.

e Binary classification y = {41, —1}. In this case, the loss function {(h(x)y) is in general a function of
h(z)y. Some popular choices of loss functions are:

0-1 loss

0-1 loss H{h(z);ﬁy} - hix)y

Hinge loss 1—h(x)yl+ R
25 \\\\
Exponential Loss(Ada Boost) exp(—h(z)y) R A
Logistic loss log(c + exp(—yh(z)))




To help our analysis, the desired loss function should 1) be not less than the 0-1 loss function, 2) be

convex, 3) and be Lipschitz. A function I(.) is called A—Lipschitz iff |I(a) — I(8)| < Ao — S].
Theorem 2. If the loss function is A— Lipschitz, we have

Ron(loH) < AR (H)

where

2 m
Rn(H) = %E(;Eg IIPea%Z oih(x;)
) i=1

The same inequality also holds for R, (1o H,S)

Theorem 2 can be shown be the following lemma,

Lemma 3. Let g;(0) and f;(0) be sets of functions such that Vi,0,¢’,
19i(0) — g:(0")] < [£:(0) — f:(0")]

Then for any function c(x,0) and any distribution over X,

EsEs st;p[C(w, o) + Z 0igi(0)] < EzE, Sl;p[C(% 0) + Z o fi(0)]

(8)

Proof. We are going to show it by induction. The lemma obviously holds for n = 0. Then suppose the

lemma holds for n = k, for n =k + 1:

k+1

EUl»--0k+1 Ez Slelp[c(xa 0) + Z O—lgl(e)]
i=1
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Let ¢(z,0) = 0, gi(0) = l(hy(2)y) and f;(0) = Ah,(x)y, we apply the above lemma and prove

Theorem 2

O



Theorem 4. A linear hypothesis class H such that Vh € H, hy(x) =< w,x >€ [-1,+1], where
w e R |lw||l, < B, and z € R”, ||z||, < X, we have

2BX

Ron(H,8) < N (9)

Proof.

R (H,S)
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