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Sample compression schemes
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Definition 1. An unlabeled compression scheme of size k is defined by a pair of functions:

• Compression function c : (x× y)m → X≤k

• Reconstruction function: r : X≤k → H

Definition 2. A labeled compression scheme of size k is defined by a pair of functions:

• Compression function c : (x× y)m → (x× y)≤k

• Reconstruction function: r : (x× y)≤k → H

Definition 3. An algorithm A is called a sample compression algorithm if ∃c, r such that A(S) =
r(c(S)).

Example 1 (unlabeled)
X = R2, H = axis parallel boxes

t

b

l r+

ht,b,l,r(x) = +1 if (l ≤ x1 ≤ r ∧ b ≤ x2 ≤ t); −1 otherwise.

c(S)→ {xl, xr, xt, xb}
r(xl, xr, xt, xb)→ smallest enclosing box

Example 2 (labeled)
Support vector machines:
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c(S)→ support vectors
r(c(S))→ max-margin hyperplane

Theorem 4. Consider a sample compression algorithm A of size k; ` ∈ [0, c].

`(A(S);D) ≤ m

m− k
`(A(S);S) + c

√
log 1

δ + k log em
k

2m

Proof. Let I ⊆ {1, . . . ,m}, with |I| ≤ k.
Let hI = r(SI) where SI = {(xi, yi)}i∈I
Note: hI is independent of SĪ , where Ī = {1, . . . ,m}\I

By Hoeffding, `(hI ;D) ≤ `(hI ;SĪ) + c

√
log 1

δ

2m
(with probability ≥ 1− δ) (1)

The number of candidate output hypotheses of A is:

k∑
i=0

(
m

i

)
≤
(em
k

)k
Using union bound, equation 1 holds for all |I| ≤ k uniformly with probability ≥ 1− δ

(
em
k

)k = 1− δ′.

Therefore, with probability ≥ 1− δ′, ∀|I| ≤ k, `(hI ;D) ≤ `(hI ;SĪ) + c

√
log 1

δ′ + k log em
k

2m

Note that (m− k)`(h;SĪ) ≤ m`(h;S). The theorem follows.

Definition 5. Realizable case: ∃h ∈ H with `(h;D) = 0.

Assume: ∀S, r(c(S)) is consistent with S.
In other words, if S = {(xi, yi)}mi=1 and h = r(c(S)), then ∀i h(xi) = yi.

Theorem 6. If ` is the error indicator,

Pr (`(A(S);D) > ε) ≤
(em
k

)k
. (1− ε)m−k ≤

(em
k

)k
.e−ε(m−k) ≡ δ

⇔ with probability ≥ 1− δ, `(A(S);D) ≤ O
(

1
m

)
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Proof. Let I be a subset of {1, . . . ,m}

Pr ((`(hI ;D) > ε ∧ `(hI ;SĪ) = 0)) ≤ Pr (`(HI ;SĪ) = 0|`(hI ;D) > ε))

≤ (1− ε)|I|

≤ (1− ε)m−k

Using the union bound on
∑k
i=0

(
m
i

)
‘bad events’, the theorem follows.

Conclusion: the size of the smallest compression scheme for H (r(c, S) is consistent with S) behaves like
V C(H), i.e. it measures the complexity of H.

Connection to VC

Growth function: gH(m) = max
S⊆Xm

|{(h(x1), . . . , h(xm))}h∈H|

Therefore, there are at most gH(|S|) ways to label S.
We also assume that one of them is consistent with S (realizability).
Sauer’s lemma: gH(m) ≤

∑d
i=0

(
m
i

)
where d = V C(H).

The six hundred dollar question:
Is it true that V C(H) = d⇒ ∃ an unlabeled compression scheme of size d?
This statement is true for maximum classes. Class H is a maximum class if Sauer’s lemma holds with
equality.

Connection to PAC-Bayes

Redefine the reconstruction function r : X≤k ×M→ H, where M is a set of message strings.

Case 1: r(SI , σ) ignores σ → back to original definition of compression schemes.
Case 2: r(SI , σ) ignores SI → back to standard statistical learning.

We decompose the prior Pr (I, σ) = Pr (I) Pr (σ|I)

• If |I| = |I ′|, the prior should not differentiate between them, i.e. Pr (I) = Pr(|I|)
(m
|I|)

• Pr (i) = 0 for i > k.

Theorem 7. (c, r) is a compression scheme (with message) of size k, for any prior P (expressed as above).
∀D, ∀δ > 0, with probability ≤ 1− δ over S ∼ Dm, ∀Q (posteriors),

KL(`(Q;S)||`(Q;D)) ≤
KL(Q||P ) + ln m+1

δ

m− k
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