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Sample compression schemes
Lecturer: Ofer Dekel Scribe: Aniruddh Nath

Definition 1. An unlabeled compression scheme of size k is defined by a pair of functions:
e Compression function c: (x x y)™ — X<k
e Reconstruction function: r: X<F — H
Definition 2. A labeled compression scheme of size k is defined by a pair of functions:
e Compression function c: (x X y)™ — (z x y)<F
e Reconstruction function: r: (x x y)<F — H
Definition 3. An algorithm A is called a sample compression algorithm if Jc,r such that A(S) =

r(c(5))-

Example 1 (unlabeled)
X = R?, H = axis parallel boxes

te

hipir(@) =411 (1 <z <rAb<ze<t); —1 otherwise.

c(S) = {z, Try T4, 0}
r(xy, ©,, xs, ) — smallest enclosing box

Example 2 (labeled)
Support vector machines:



©

¢(S) — support vectors
r(¢(S)) — max-margin hyperplane

Theorem 4. Consider a sample compression algorithm A of size k; ¢ € [0, ].

1 em
m . 9) + ¢ log 5 + klog <*
2m
Proof. Let I C {1,...,m}, with |I| < k.
Let hy = r(Sr) where St = {(zi,yi) }ier
Note: hj is independent of S7, where I = {1,...,m}\I

logi
By Hoeffding, O(hr; D) < (hy;Sp) +c 95

S (with probability > 1 — §)

The number of candidate output hypotheses of A is:
b (m) em\k
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Using union bound, equation 1 holds for all |I| < k uniformly with probability > 1 —§ (%)k =1-4.
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Therefore, with probability > 1 — &', V|I| <k, {(h;;D) < {l(h;;S;)+c 5

Note that (m — k)¢(h; S;) < mf(h; S). The theorem follows.
Definition 5. Realizable case: 3h € H with £(h; D) = 0.

Assume: VS, r(c(S)) is consistent with S.
In other words, if S = {(z;,y;)}™, and h = r(c(S)), then Vi h(x;) = y;.

Theorem 6. If { is the error indicator,
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Pr(((A(S);D) > ¢) < (%) (1) < (em) emsm=k) = §
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< with probability > 1 -6, ((A(S); D)
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Proof. Let I be a subset of {1,...,m}

Pr((4(h;; D) > e ANl(hr; S7) =0)) < Pr(¢(Hy; S5) = 0|4(hr; D) > ¢€))
< (1—¢g)!l
S (1 o E)mfk

Using the union bound on Zf:o (T) ‘bad events’, the theorem follows.

O

Conclusion: the size of the smallest compression scheme for H (r(c, S) is consistent with S) behaves like
VC(H), i.e. it measures the complexity of H.

Connection to VC

Growth function:  gg(m) = Srg%{)y(yJ{(h(m), vy (@) b hen

Therefore, there are at most g (|S|) ways to label S.
We also assume that one of them is consistent with S (realizability).

Sauer’s lemma: gp(m) < Z?:o (") where d = VC(H).
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The six hundred dollar question:

Is it true that VC(H) = d = 3 an unlabeled compression scheme of size d?

This statement is true for maximum classes. Class H is a maximum class if Sauer’s lemma holds with
equality.

Connection to PAC-Bayes

Redefine the reconstruction function r : X<* x M — H, where M is a set of message strings.

Case 1: (S, 0) ignores o0 — back to original definition of compression schemes.
Case 2: (S, 0) ignores S; — back to standard statistical learning.

We decompose the prior Pr (I,0) = Pr(I) Pr(o|I)
e If |I| = |I’|, the prior should not differentiate between them, i.e. Pr(I) = —52

e Pr(i)=0fori>k.

Theorem 7. (c,r) is a compression scheme (with message) of size k, for any prior P (expressed as above).
VD, V§ > 0, with probability < 1 — & over S ~ D™, YQ (posteriors),

KL(Q||P) + In ™
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