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Doob Martingales and online learning
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1 Background on Expectation

Conditional probability: P(A|B) = P(A∩B)
P(B) .

Expectation: Let Z : Ω→ R be a random variable. E[Z] =
∑

z∈Ω P(Z = z)z.
Conditional Expectation 1: E[Z|Y = y] =

∑
z P(Z = z|Y = y)z. This expectation is a function of y and

hence a number.
Conditional Expectation 2: E[Z|Y ] =

∑
z P(Z = z|Y )z. This expectation is a function of Y and hence

a random variable.
Example 1

X =
{

1 w.p. 1/2
0 w.p. 1/2 Y =

{
2 w.p. 1/2
0 w.p. 1/2 (1)

Let Z = X + Y . Note that, E[Z] = 1
4 [0 + 1 + 2 + 3] = 3/2.

E[Z|X] =
{

E[Z|X = 0] w.p. P(X = 0) = 1/2
E[Z|X = 1] w.p. P(X = 1) = 1/2 (2)

Note that E[Z|X] = E[Y ] + X = 1 + X.

Lemma 1 (Law of Total Expectation). ∀X, Y E[X] = E[E[X|Y ]].

Proof.

E[X] =
∑

x P(X = x)x
=

∑
x(

∑
y P(X = x, Y = y))x

=
∑

x(
∑

y P(X = x|Y = y)P(Y = y))x
=

∑
y P(Y = y)

∑
x P(X = x|Y = y)x

=
∑

y P(Y = y)E[X|Y = y]
= E[E[X|Y ]]

(3)

where the second equality follows from total probability.

Example 2 Let U1, U2, . . . , Um be random variables. Let X = f(U1, U2, . . . , Um) and Z = E[X|U1, U2, . . . , Uk].
Then, E[X] = EU1,U2,...,Uk

[EUk+1,...,Um
[X]] = EU1,...,Uk

[E[X|U1, U2, . . . , Uk]] = E[Z]. The previous expression
also follows from the law of total expectation.

2 Background on Martingales

Definition 2. A sequence of random variables (Wi)m
i=0 is a martingale w.r.t another sequence of random

variables (Ui)m
i=1 if

E[|Wi|] <∞
∀i E[Wi+1|U1, U2, . . . , Ui] = Wi

(4)
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Example 3 Consider a random walk on real line:

-1 0 1
Let Wi denote the position after i steps with the inital position W0 = 0. Let the random walk be described
by:

Wi+1 =
{

Wi + 1 w.p. 1/2
Wi − 1 w.p. 1/2 (5)

Let,

Ui =
{

1 w.p. 1/2
−1 w.p. 1/2 (6)

Note that, Wi+1 = Wi +Ui+1, i = 0, . . . ,m−1. Also, (Wi)m
i=0 is a martingale w.r.t (Ui)m

i=1 since E[|Wi|] <∞
and E[Wi+1|U1, U2, . . . , Ui] = E[

∑i+1
j=1 Uj |U1, U2, . . . , Ui] =

∑i
j=1 Ui + E[Ui+1] = Wi.

3 Doob Martingale

Definition 3. Let (Ui)m
i=1 be a sequence of random variables and f(U1, U2, . . . , Um) be a function such that

E[|f(U1, U2, . . . , Um)|] <∞. The doob martingale is defined as (Wi)m
i=0 where, Wi = E[f(U1, . . . , Um)|U1, U2, . . . , Ui]

for 1 ≤ i ≤ m and W0 = E[f(U1, . . . , Um)].

Note that the randomness is incrementally revealed in Wi as i goes from 0 (W0 is a scalar) to m (Wm is
a function of U1, U2, . . . , Um).

Theorem 4. A doob martingale is a martingale.

Proof. For a doob martingale, E[|Wi|] = EU1,...,Ui
[|EUi+1,...,Um

[f(U1, . . . , Um)]|] ≤ E[|f(U1, . . . , Um)|] < ∞.
Also, E[Wi+1|U1, . . . , Ui] = E[E[f(U1, . . . , Um)|U1, . . . , Ui+1]|U1, . . . , Ui] = EUi+1,...,Um

[EUi+2,...,Um
[f(U1, . . . , Um)]] =

EUi+1,...,Um
[f(U1, . . . , Um)] = E[f(U1, . . . , Um)|U1, . . . , Ui] = Wi.

Definition 5. We say that a martingale (Wi)m
i=0 has c

m -bounded differences ( c
m -Lipschitz) if |Wi+1−Wi| ≤

c
m .

Fact 6. Hoeffding-Azuma: For Doob Martingales with c
m -bounded differences, P(Wm−W0 < ε) ≤ e

−2mε2

c2 .
Thus, for all δ > 0 w.p. ≥ 1− δ over the random draws U1, . . . , Um,

Wm ≤W0 + c

√
log 1

δ

2m
(7)

For general martingales, P(Wm −W0 > ε) ≤ e−
mε2

2c2 .

4 Online Learning

Assume the samples, S ∈ Dm. Let (X ,Y) denote the set of all possible feature vectors and labels respectively.
The general form of online learning is as follows:

1. Start with h0 ∈ H.

2. For i = 1, 2, . . . ,m,
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(a) Receive xi ∈ X .

(b) Predict hi−1(xi).

(c) Receive yi ∈ Y.

(d) Suffer loss l(hi−1; (xi, yi)).

(e) Update hi ← A(hi−1; (xi, yi)) (where A denotes the online algorithm).

Remarks
Now let f(S) = 1

m [
∑m

i=1 l(hi−1;D)−
∑m

i=1 l(hi−1; (xi, yi))]. Define
∑m

i=1 l(hi−1; (xi, yi)) to be the cumulative
loss. We make the following remarks.

1. l(hi−1;D) is a random variable (since hi−1 is a function of (xj , yj)i−1
j=1 that are drawn i.i.d from D).

2. l(hi−1; (xi, yi)) is a random variable (with randomness in (xj , yj)i
j=1).

3. E[l(hi−1; (xi, yi))|(xj , yj)i−1
j=1] = E(xi,yi)[l(hi−1; (xi, yi))] = l(hi−1;D).

4. If l ∈ [0, c] then Wi = E[f(S)|(xj , yj)i
j=1] is a Doob martingale with c

m -bounded differences.

Theorem 7. ∀δ > 0, w.p. ≥ 1− δ over the random (i.i.d) sampling of S ∈ Dm,

f(S) ≤ c

√
log( 1

δ )
2m

(8)

Proof. Remark 4 states that Wi = E[f(S)|(xj , yj)i
j=1] is a doob martingale. W0 = E[f(S)] and Wm = f(S).

Thus, by Hoeffding-Azuma inequality(Fact 6), it follows that w.p. ≥ 1− δ,

Wm −W0 ≤ c

√
log( 1

δ )

2m

f(S)− E[f(S)] ≤ c

√
log( 1

δ )

2m

(9)

It also follows from Remark 3 that E[f(S)] = 0 and hence the theorem follows.

Remark
Let 1

m [
∑m

i=1 l(hi−1;D)] denote the average risk of {h0, . . . , hm−1}. Also let Q be the uniform distribution
over {h0, . . . , hm−1}. Then, the previous theorem implies that w.p. ≥ 1− δ,

l(Q;D) ≤ 1
m

m∑
i=1

l(hi−1; (xi, yi)) + c

√
log( 1

δ )
2m

(10)
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