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Doob Martingales and online learning
Lecturer: Ofer Dekel Scribe: Karthik Mohan

1 Background on Expectation

Conditional probability: P(4]B) = P85,

Expectation: Let Z : Q@ — R be a random variable. E[Z] =) o P(Z = 2)z.

Conditional Expectation 1: E[Z|Y =y| =), P(Z = 2|Y = y)z. This expectation is a function of y and
hence a number.

Conditional Expectation 2: E[Z|Y] = )" P(Z = 2|Y)z. This expectation is a function of ¥ and hence
a random variable.

Example 1
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Let Z =X 4 Y. Note that, E[Z] = 1[0+ 1 + 2+ 3] = 3/2.

E[ZX =0 wp. P(X=0)=1/2
E[Z|X] = { E[Z|X =1] W.E. P(X=1)=1/2 ?

Note that E[Z|X]| =E[Y]+ X =1+ X.
Lemma 1 (Law of Total Expectation). VX,Y E[X] = E[E[X|Y]].

Proof.
ElX] = Y. PX=a)

= >0, P( =Y =y)z

= >, ,PX =zlY =y)P(Y =y))z 3)
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= >, PY =yEX|Y =y]

= E[E[X]Y]]
where the second equality follows from total probability. O
Example 2 Let Uy, Us, . .., Uy, be random variables. Let X = f(Uy,Us,...,Upy) and Z = E[X|Uy,Us, ..., U]

Then, E[X] = Ey, v,,...,v, [Eviss,....v. [ X]] = Evy,... 0, [E[X|UL, Us, . . ., Uk]] E[Z]. The previous expression
also follows from the law of total expectation.

2 Background on Martingales

Definition 2. A sequence of random variables (W;)i%, is a martingale w.r.t another sequence of random
variables (U;)1, if

E[IWil] < o0 (4)
Vz E[Wi+1|U1;U27"'7U’L'] :Wi



Example 3 Consider a random walk on real line:
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Let W, denote the position after i steps with the inital position Wy = 0. Let the random walk be described
by:

o Wi+l wop. 1/2
Wit = { W;—1 w.p. 1/2 (5)
Let,
1 wp. 12
Ui _{ ~1 wp. 1/2 (©)

Note that, Wit1 = W;+Uit1,i=0,...,m—1. Also, (W;)/, is a martingale w.r.t (U;);; since E[[W;|] < oo
and E[Wi+1|U1, Ug, ey Uz] = E[ZH_l Uj‘Ul, UQ, RN Uz] = Z.ijl Uz + E[UZ+1] = Wz

Jj=1

3 Doob Martingale

Definition 3. Let (U;)™, be a sequence of random variables and f(Uy,Us,...,Uy,) be a function such that
E[|f(U1,Us,...,Un)|] < co. The doob martingale is defined as (W;)™, where, W; = E[f(Un,...,Un)|U1,Us, ..., U]
for1<i<m and Wy = E[f(Uy,...,Upn)].

Note that the randomness is incrementally revealed in W; as i goes from 0 (W) is a scalar) to m (W, is
a function of Uy, Us, ..., Up).

Theorem 4. A doob martingale is a martingale.

Proof. For a doob martingale, E[|W;|| = Eu, .. v, [|[Evir,...00 [f(Ur, ..., U] < E[|f(Un,...,Un)|] < oc.
AAISO7 E[Wi+1|U17 ey Uz] = E[E[f(Ul, ey Um)|U1, ey Ui+1]|U17 ey Ul} = EUi+1,m,Um[EUiJrz,m,Um [f(Ul, ey Um)]] =
Eviirv U [f (U, .., Up)] = E[f(Ur,...,Un)|Us, ..., U] = W,. O

i

Definition 5. We say that a martingale (W;)7 has < -bounded differences (< -Lipschitz) if |[Wit1 —W;| <

m m
<
m’

2me?

Fact 6. Hoeffding-Azuma: For Doob Martingales with -=-bounded differences, P(W,,—Wy <€) < e e
Thus, for all § > 0 w.p. > 1 —§ over the random draws Uy, ..., Uy,

log &
Wm S WO +c 2m6 (7)

Tn,€2
For general martingales, P(W,,, — Wy > €) < e 27 .
4 Online Learning

Assume the samples, S € D™. Let (X,)) denote the set of all possible feature vectors and labels respectively.
The general form of online learning is as follows:

1. Start with hg € H.
2. Fort=1,2,...,m,



Receive z; € X.

Predict h;—1(x;).

(¢) Receive y; € V.

(d) Suffer loss I(h;—1; (zi,5))-

(e) Update h; «— A(h;—1; (x;,y;)) (where A denotes the online algorithm).

(a
(b

D

Remarks

Now let f(S) = L[37  l(hi—1; D)= 31", U(hi—1; (i, yi))]- Define 37" 1(hi—1; (%,;)) to be the cumulative
loss. We make the following remarks.

1. I(h;—1;D) is a random variable (since h,;_; is a function of (x;, yj);;ll that are drawn i.i.d from D).
2. 1(hi—1; (i, y:)) is a random variable (with randomness in (z;,y;)%;).

8. Elh—1: (09253374 = B Ui (2209))] = Uhi1 D).

4. If 1 € [0, ¢] then W; = E[f(S)|(x},y;)5=1] is a Doob martingale with -%-bounded differences.

m~

Theorem 7. V6 > 0, w.p. > 1 — 0§ over the random (i.i.d) sampling of S € D™,

log()

2m

f(5) <e

(8)

Proof. Remark 4 states that W; = E[f(S)|(x;,y;)’=,] is a doob martingale. Wy = E[f(S)] and W,,, = f(5).
Thus, by Hoeffding-Azuma inequality(Fact 6), it follows that w.p. > 1 — 4,

log(3)
W =Wy < 5
L e ®
fFS) —Ef(S)] < oy =0
It also follows from Remark 3 that E[f(S)] = 0 and hence the theorem follows. O

Remark

Let L[> I(hi—1; D)] denote the average risk of {ho, ..., hp—1}. Also let Q be the uniform distribution
over {hg,...,hm—1}. Then, the previous theorem implies that w.p. > 1 -,

U D) < %il(hiﬂ; (zi,9i)) +c 1og(%)

i=1

(10)
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