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PAC-Bayes Analysis
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1 Recap of PAC-Bayes Theory

PAC-Bayes theory [McA03] was developed by McAllester initially as an attempt to explain Bayesian learning
from a learning theory perspective, but the tools developed later proved to be useful in a much more general
context. PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple
proofs. PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis
class, rather than a single best hypothesis. However, it is possible to de-randomize the PAC-Bayes bound to
get bounds for algorithms that output deterministic hypothesis.

2 PAC-Bayes Generalization Bound

We will consider the binary classification task with an input space X" and label set Y = {+1,—1}. Let D be
the (unknown) true on X x Y. Let H be a hypothesis class of functions f : X — ). Let P be the space of
probability distributions on H. We consider 0, 1-valued loss functions [ : H x (X x V) — {0,1}.

Definition 1. Let Q € P. Define:
Risk of Q 1(Q; D) = E(zy)~pEn~q [l(h; (2,))]

Emperical Risk of Q 1(Q; D) = ﬁ Z Enq[l(h; (z,y))]
(x,y)eD
For 0, 1-valued loss functions, {(Q; D),1(Q;D) € [0,1]. Thus, they can be interpreted as the parameter
of a Bernoulli random variable. Given, P, € P, we measure the distance between them using the KL-
divergence:

KL (1(Q; D) || I(P; D)) = I(Q; D) log (jﬁfﬁg;) +(1-U@;D))log G:;E%go

Note that the KL-divergence is jointly convex in both its arguments (this follows from the convexity of the
function zlog(z/y) over 0 < x,y < 1). We’'ll use this fact in the proofs later. We analyze algorithms with
the following structure:

1: Choose a prior distribution P € P before seeing any data.

2: Observe data D and choose posterior Q € P. @ can depend on D, P.

3: Output @
Note: The distribution () need not be a Bayesian posterior, it can be any distribution. It is allowed to
depend on P, D but need not. We will later talk about constructing distribution-dependent priors P where
the algorithm is not allowed to use P.
Note: We use probability distributions with two different semantics: P encodes our subjective a-priori
belief about what hypotheses are true and D describes the randomness in the real-world.

Theorem 2. (McAllester) VD,VHVP € PV > 0, we have with probability at least 1 — & over S ~ D™:
VYQ € P (posterior distribution on H that depends on S),

KL (Q || P) +log (")
m

KL ((@;5) [ U@ :D)) <



Proof. Define
Z=E_lexp (mKL(1(h: 5) || 1( D))
We shall prove this theorem in 2 parts:

KL(Q|IP)+log (2512

m

1 With probability at least 1 — §, KL (I(Q;S) || 1(Q; D)) <
2 Bg[Z) <m+1
Proof of Part 1

Using Markov’s inequality, we have: YaPr[Z > a] < EST[Z] Plugging in a = ES(S[Z]7 we get
Pr [Z> Bs [Z]] <4
a

e . . . Es|[Z]
Note that the probability is only over sampling of h ~ P. Rewriting this, we have wp > 1—-4§ Z < ==

which is equivalent to

wp>1-5 log(Z) < log <ESQ[Z])

Thus, w.p > 1 — 6, we have:

l08(2) = og ( E, [oxp (nKL (15 ) | 1))

= log (}E}Q [P(Z) exp (mKL (I(h; S) || L(h; D)))}) (Change of Measure)

h
= —KL(Q| P)+m E [KL(I(h:5) || I(:D))] (Definition of KL)

S0
@ m : : oncavity of lo
> 5, [lox (G ) + mKL 00:5) 1 10:)| - (Concavity of g

> —KL(Q || P)+mKL(I(Q;S) || {(Q; D)) (Convexity of KL)
Rearranging terms, we get w.p > 1 — 0,
L(Q | P)+log(2)

m

L((Q:8) | 1@:D)) < =

Proof of Part 2
Let I(h; S) = ap, (h; D) = by,.

S |h~P

b - % map, 1— an m(l—ayp)
o S | h~P bh 1-— bh

2
smdm? "

[(x)”’(l_z:)m“‘””]
‘Z;<> wr () ()
¢

>

k=0

E[z]=E [ E_ [exp (m(an log(an/bn) + (1 — an)log((1 — an)/(1 = bn))))]

ap, can take m + 1 values: {0 71} and has a binomial distibution with parameter b;,. Thus,

=



We know that () (%)k (1- %)mfk is the probability that a binomial random variable with parameter

%,k‘,m is equal to k, and hence is smaller than 1. Thus, the sum over k is smaller than m + 1. Thus

Es[Z] < m + 1. One can actually show a tighter bound: Eg[Z] € [/m,Vv2m] using a more careful
analysis. 0

We now prove some corollaries to relate the KL-divergence bound to the kinds of additive bounds we have
seen before.

Lemma 3. Ifa,be€ [0,1] and KL (a || b) < z, then

b<a+\/§,b<a+2x+\/2ax

Proof. Proof of First Inequality
Consider the function f(a) = KL (a || b) — 2(a — b)2.

f'(a) = log <1fa> ~lo g(lib) — 4(a —b)

1
1"
=——4
f (a’) a(l _ a)
a(l — a) achieves its maximum of 1/4 at a = 1/2 and hence f”(a) > 0Va € [0,1]. f'(a) =0 at a = b and
" >0, therefor, b is the minimum of f(a) and f(b) = 0. Hence f(a) > 0Va € [0, 1]. Hence z > KL (a || b) >
2(a — b)%. G(b) = 2b* — dab+ 2a? — x < 0. G is a convex quadratic in b and hence if G(b) < 0, then b must
lie between the roots of G and hence be smaller than the larger root of G. Thus,

2
b<a 2% —u \/>
Proof of Second Inequality

If @ > b then the inequality is obviously true. Suppose that b > a. Then consider the function f(a) =

KL (a || b) — @9 b b
f'(a) = log <1ia) —lo g<1_b> - a;

2b
fla) =+ —— 1

1

a+1_a‘z
Since b > a,1/a > 1/b and hence f”(a) > 0. f'(b) =
b>a,x>KL(al b)> %. Thus, we get

, f(b) = 0 and hence f(a) > OVa € (a,b). Thus, if

G(b) =b* — (2a+22)b+a*> <0
Thus, as before, b is smaller than the larger root of G, ie,
at+z++/(a+z)2—a?=a+z+Va*+2ar<a+z+z+V2ar=a+2zr+V2ax

where we used the sub-additivity of the square root function.
O

Corollary 4. VD, VHVP € PV > 0, we have the following bounds with probability at least 1—6 over S ~ D™:

KL (Q || P) +log ()
m

VQeP QD)< l(Q;S)+\/



KL (Q || P) + log (“T)) + |ouas) (KL QI P) +log (’”5“))

m m

vQ eP QD) Sl(Q;S)+2<

Proof. These follow directly by plugging the KL bounds from lemma 3 into the PAC Bayes bound from
theorem 2. O
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