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1 VC Theory (Conclusion)

PAC learning (“Probably Approximately Correct” learning) is a way to define “learnable”. An algorithm
for selecting a hypothesis h from a class H should be probably approximately correct in the sense that with
high probability (with probability 1− δ) it should be a good approximation to (achieve risk within ε of) the
best hypothesis in the class.

The first works on PAC learning discussed the realizable case, in which there exists some h∗ ∈ H that
corresponds to the true relation between x and y, that is, D draws x from some marginal distribution Dx
over x and then the observed sample is (x, h∗(x)). In the context of linear classification, realizability is
equivalent to separability. In the realizable case, the loss of the best hypothesis is zero, so bounding the
excess risk of some hypothesis h is equivalent to bounding its actual risk.

Definition 1. Let X ⊆ Rd and let H be a set of functions h : X 7→ ±1. We say A is a PAC-learning
algorithm for H if

1. A outputs a hypothesis h ∈ H in time polynomial in the size of the training set S,

2. There exists a polynomial m(·, ·, ·) such that ∀D : ∀ε > 0 : ∀δ > 0 : with probability at least (1− δ) over
samples of size m(d, 1/ε, 1/δ), A returns some h with `(h;D) ≤ ε.

In the agnostic model we don’t assume that any h ∈ H corresponds to the true D, so instead of bounding
`(h;D) we bound the excess risk `(h;D)−minh′∈H `(h

′;D).

Definition 2. We say that H is PAC-learnable if there exists a PAC-learning algorithm for H.

We’ve already seen that if VC-dim(H) < ∞ then ERM is a PAC-learning algorithm for H (if it is
poly-time). Now we will show a strong converse.

Proposition 3. If VC-dim(H) =∞ then H is not PAC-learnable.

Proof. Assume VC-dim(H) = ∞. Then there exists some set X = {xi}∞i=1. For any set of i labels y1:i, let
Di(y1:i) be the distribution that selects x uniformly from x1, . . . , xi and assigns the labels y1, . . . , yi. Suppose
there were some A that PAC-learns H. Given δ > 0 and ε > 0 with ε < 1/4, let m be the sample size needed
by A to achieve ε risk with probability 1 − δ. Consider the distributions Di(y1:i) for i = 2m. There exists
some y1:i such that given S ∼ Di(y1:i)m, on expectation h = A(S) is correct on at most half of the remaining
m points. Therefore its total risk is at least 1/4 > ε.

2 PAC-Bayes (Introduction)

Recall: In Structural Risk Minimization (SRM) we have a nested sequence of hypothesis classes H1 ⊆ H2 ⊆
H3 . . .. Assume that the loss ` ∈ [0, c], and define the Rademacher complexity of the ith hypothesis class to
be Rm(` ◦Hi) = ρi so ρi ≤ ρi+1.

Proposition 4. For all δ > 0, with probability (1 − δ) with respect to the choice of S ∼ Dm, for all i, for
all h ∈ Hi,

`(h;D) ≤ `(h;S) + ρi + c
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Proof. For each i, the bound holds with probability at least 1 − δ
i(i+1) so using the union bound, it holds

simultaneously for all i with probability (1− δ).

This gives us a way to encode prior information into our learning algorithm: put hypotheses that are
more likely a priori into the earlier Hi in the sequence. If the data do not contradict our prior information,
then some hypothesis h ∈ Hi for small i achieves a small loss and the bound is tighter. Otherwise, we need
to use h from a higher Hi, and the bound is weaker. The goal of PAC-Bayes is to extend this idea to more
general forms of prior information, e.g., a smooth prior distribution over hypothesis, not “onion peels” of
consecutive hypothesis classes.

In Bayesian learning, we start with a prior distribution P (H) encoding our beliefs about how likely
each hypothesis is prior to observing any data. Then we observe a sample S ∼ Dm and use Bayes’ rule to
determine the posterior distribution Q(H). Overloading the ` notation once again, we will write

`(Q;D) , Eh∼Q[`(h;D)] = Eh∼Q[E(x,y)∼D[`(h; (x, y))]].

The natural question is, what use is a posterior distribution? I.e., how can we make predictions when
our algorithm provides a distribution over hypotheses, and not a concrete h? The easiest solution is to use
a randomized hypothesis called the Gibbs hypothesis: For each new input x, we sample an independent
h ∼ Q and use it to predict h(x). We will see that it is easiest to use PAC-Bayes to prove bounds on the
risk of the Gibbs hypothesis. Another solution is to sample many hi ∼ Q i.i.d. and output the majority
vote. The majority vote classifier seems more reasonable and works better in practice, although all we can
say theoretically is that it is not likely to be much worse than the Gibbs hypothesis.

Example: For w ∈ Rn, define

hw(x) =

{
+1 with probability 1

Z e
〈w,x〉

−1 with probability 1
Z e
−〈w,x〉 where Z = e〈w,x〉 + e〈−w,x〉.

The prior P is a zero-mean Gaussian distribution over w with covariance σ2I: P (hw) ∝ exp(−||w||2/σ2).
Think of the prior as encoding that “my model of the world” is that D samples x1:m i.i.d. from some marginal
distribution over x, then samples h ∼ P and outputs S = {(xi, h(xi)}mi=1. Then the likelihood is

Pr [y1:m|hw, x1:m] =
∏
i

1

Zi
eyi〈w,xi〉 ∝ exp

∑
i

yi〈w, xi〉.

Using Bayes’ rule

Pr [A|B,C] =
Pr [B|A,C] · Pr [A|C]

Pr [B|C]
,

we can form the posterior (note that the evidence Pr [y1:m|x1:m] is absorbed into the proportionality constant
because it does not depend on hw)

Pr [hw|y1:m, x1:m] =
Pr [y1:m|hw, x1:m] · Pr [hw|x1:m]

Pr [y1:m|x1:m]

∝

(
exp

∑
i

yi〈w, xi〉

)
·
(

exp−||w||
2

σ2

)

∝ exp

(∑
i

yi〈w, xi〉 −
||w||2

σ2

)

In the next lecture, we will see that the critical factor determining the complexity of the learning algorithm
will become KL(Q||P ), the Kullback-Liebler divergence from Q to P instead of the Rademacher complexity.
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