
CSE522, Winter 2011, Learning Theory Lecture 1 and 2 - 01/04/2011, 01/06/2011

Introduction and Models
Lecturer: Ofer Dekel Scribe: Jessica Chang

Machine learning algorithms have emerged as the dominant and ubiquitous tool in computer science. From
computational biology to search engine problems, these algorithms are being applied to the whole gamut
of real-world problems, and the fundamental underlying theory behind these tools must be understood to
fully harness the power of their design and application. Via breakthroughs in learning theory, which builds
from results in mathematics and theoretical computer science, we are only just beginning to witness payoff
in other fields.

1 Prediction Problems

In this course, we will work mostly in the prediction problem framework, which captures many common
machine learning problems. The goal of a prediction problem is to give the correct label (e.g. prediction or
output) to an instance (e.g. context or input). For example:

• search engine revenue: search engines receive queries and want to predict the revenue made from
(ads displayed for) that query

• objection recognition: USPS scans a bitmap of a zipcode and wishes to predict the digits of the zip
code

• decision problems: a robot is given some state of the world and needs to predict the next best
action.

As a first naive option, one could solve prediction problems via hard-coded logic (expert systems): for
every possible instance, output the correct label. However, humans are better at providing examples than
finding the actual solution. Machine learning algorithms leverage this strength by learning from provided
examples. The general prediction paradigm is then

• find a representative set of m instances of the problem, u1, . . . , um

• human (the “teacher”) provides the correct labels y1, . . . , ym

• each (ui, yi) pair is a “labeled example”

• ML algorithm attempts to identify the simple hypothesis which explains the relationship between the
inputs and outputs

The notions of “representative” and “simple” are important and we will discuss their significance more
formally. This latter approach lends itself well to generalization, which is the idea of looking at m examples,
identifying a hypothesis, and applying it to the next example. Notice, in stark contrast, that the task of
memorization, i.e. anti-learning, is more trivial. The hypothesis

h(u) =

{
ym if u = um
0 otherwise

perfectly fits the m examples, but does not generalize. Hypothesis h(u) can encapsulate any relationship
and is not simple; this is not learning.

1

2 What is Learning?

This question has been asked by natural scientists and philosophers alike long before the birth of Computer
Science as a field. The following list highlights a few notable perspectives on the notion of “learning” that
have developed over the centuries.

• Occam’s Razor (14th century): “entities must not be multiplied beyond necessity,” i.e., all things
being equal, tend toward the simplest explanation. This intuitive perspective is also referred to as
“regularization”.

• Karl Popper (20th century): “we prefer simpler hypotheses because they are easier to test/falsify.” For
example, suppose you are sitting in a field and observe three times that after a cow moos, her calf runs
to her. You might be inclined to conclude that when animals make noise, their children run to them.
However, as you are walking home, you observe that a dog barks and that her puppy does not run to
her. Your initial conclusion has been easily falsified.

• Underdeterminism. Descartes (17th century) asked, “We only see a finite amount of examples, so
how can we choose between two different hypotheses?”

• Swinburne (20th century): “infinitely many hypotheses fit the data, and we have to choose something,
so choose the simplest one.”

It is clear that people have sought answers to this question for centuries. We are now on the cusp of
finding rigorous answers to some of these questions. Intuitively, to truly understand goes beyond the ability
to explain something that has already been seen; understanding is closely tied to the capacity to predict
what has yet to be observed. In other words, understanding is closely related to generalization.

Figure 1: Candidate hypotheses for examples.

Let’s revisit our search engine example. Consider the three candidate hypotheses for a set of examples,
as depicted in Figure 1. Hypothesis 1, the best linear fit, is too coarse to yield any insightful relationship.
On the other hand, hypothesis 2, which is the best fit for the examples, is underdetermined, arbitrary, and
also not insightful for making future predictions. Hypothesis 3 is probably the best hypothesis.

2

How do we achieve generalization? The following list is a high-level preview of concepts to be covered
in this course. They demonstrate how learning theory has taken philosophical questions about learning
forward.

1. Simplicity yields generalization. We will see this when we cover Rademacher theory and VC
theory.

2. Inability to explain noise yields generalization. This will be seen in P.A.C.-Bayes analysis,
structural risk minimization, and O2B.

3. No surprise yields generalization. See future notes on SRM and P.A.C.-Bayes analysis.

4. Algorithmic stability yields generalization. The learning algorithm should not be highly sensitive
to individual points.

5. No regret yields generalization. This concept intersects with game theory.

3 Supervised Statistical Learning

In this section, we introduce the main components and corresponding notation of the (statistical) supervised
learning problem, beginning with the concept of features.

Definition 1. For any prediction model, feature extraction maps an input u via a feature mapping X to a
feature vector X(u). X(u) is a vector of n features which are representative of the input. The feature space
X is the space of all feasible feature vectors.

Typically, X ⊆ Rn. In our search engine example, X(u) ∈ Rn would denote the feature vector of query
u. The first coordinate x1 might denote the number of query words; x2 might be the indicator for whether
the query contains the word “buy”; x3 might be the fraction of words that appear is some dictionary; etc.
How to properly extract features depends on the user. In this course, it will be assumed that the feature
mapping is given.

Definition 2. The label space Y is the domain of our predictions. When Y is defined to be finite, it is
referred to as the label set.

Y unless otherwise noted is R+. The label set can differentiate between several supervised learning
problems, as can be seen in the following list of a few common problem types.

• regression problems: Y = R or more specifically, Y = [0, 1] if labels are probabilities

• binary classification: Y = {−1,+1}. A binary classifier is a hypothesis h : X → {−1,+1}.

• multiclass classification: Y = {1, . . . , k}

• multiclass multilabel problems: Y = 2{1,...,k}.

• ranking problems: given a base set Ỹ of ground elements, e.g. web pages, Y is the set of all permuta-
tions, e.g. possible rankings, of Ỹ.

Definition 3. A hypothesis h : X → Y is a mapping of inputs, represented via feature vectors, to outputs
or predictions. The hypothesis space H is the set of all candidate hypotheses.

For example, H might be defined as the space of linear functions hw(x) where w ∈ Rn and hw(x) = 〈x,w〉.
Alternatively, H might be the space of decision trees, i.e. a piece-wise constant function defined by the
structure and labels of the tree; the labeled leaves of the tree comprise Y. We will be interested in finding
“good” hypotheses within H.

It is natural to ask how well a given hypothesis h performs on a given labeled example (x, y).

3

Definition 4. The loss function ` : H × (X × Y) → R+ measures the quality of a prediction on a given
example. In other words, `(h; (x, y)) is the penalty for predicting h(x) when the correct label is y.

Common examples of loss functions:

• error indicator: `(h; (x, y)) = I{h(x)6=y}. This is a natural definition for binary or multiclass classification
problems in which all wrong predictions are equally wrong.

• squared error (L2 error): `(h; (x, y)) = (h(x)− y)2

• negative log likelihood (for Bayesian Learning)

In general, the loss function can be arbitrary and should be defined by the user in a way that models the
problem.

So far, our model says very little about the “correct labels” and where they come from. We need a general
representation of our world/problem context. For statistical supervised learning problems, we address this
issue by representing the world as a distribution.

Definition 5. Let D : X ×Y be the probability distribution on the space of examples representing the world
or context of the problem.

In general, D can be arbitrary. It is not necessarily consistent or without noise and models the full
complexity of the world. The standard assumption is that D exists but is unknown. Now we can pose the
following more natural question: how good is a given hypothesis h on average? This motivates the concept
of risk.

Definition 6. The risk of hypothesis h is

`(h;D) = Exp(x,y)∼D[`(h; (x, y))]

Risk is also refered to as “expected loss/error” or “generalization loss/error” in the literature. The goal
of statistical supervised learning is to minimize risk. Since D is unknown, we have no way of measuring risk
directly. Thus, it is also standard to make the (strong) assumption that we can sample from D.

Definition 7. Given examples S = {(xi, yi)}mi=1, the empirical risk is

`(h;S) =
1

m

m∑
i=1

`(h; (xi, yi))

Empirical risk is also known as “training loss/error” or “empirical loss/error”. Empirical risk is measure-
able. When is it a good approximation of risk? For example, the memorization hypothesis h has empirical
risk `(h;S) = 0, since it remembers the right outputs for instances of S, but this is no indication of h’s true
risk.

3.1 Empirical Risk Minimization Algorithm

Due to Vladimir Vapnik, the empirical risk minimization (ERM) algorithm is at the core of the vast majority
of machine learning algorithms used today. Its premise is that minimizing empirical risk yields a good
approximation to minimizing risk.

Definition 8. ERM algorithm.

1. Choose a hypothesis class H, which is the set of all candidate hypotheses.

2. Choose a loss function `.

4

3. Sample a training set of examples S ∼ Dm, i.e. such that each example is sampled i.i.d. from D.

4. Find h = ERM(H, `, S) = minh∈H `(h;S).

Despite the vast attention that Step 4 has received, the most important aspect of the ERM algorithm is
in choosing the appropriate hypothesis class. That there is very little theory for choosing H is one of ERM’s
weaknesses. The third step is not imperative to the definition of ERM, only to the theorems that we will
be proving next. There are techniques to relax the independence assumption, but for now, suppose that the
samples are drawn i.i.d.

Example 1 Suppose that S = {(xi, yi)}mi=1, where all xi ∈ Rn and all yi ∈ R+, is such that S ∼ Dm. Let
A be the matrix whose rows consist of the xi’s. Additionally, let H = {hw : X → Y : hw(·) = 〈·, w〉 and w ∈
Rn}, i.e. H is the set of linear functions. If loss is measured via the squared error function, then we informally
want a hypothesis hw which, for every example (x, y) minimizes `(hw; (x, y)) = (hw(x) − y)2. The ERM
algorithm finds the hypothesis which is

argmin
w∈Rn

1

m

m∑
i=1

(〈w, xi〉 − yi)2 = argmin
w∈Rn

1

2
‖Aw − y‖22

Suppose that rank(ATA) = n. Since the objective function is convex, ERM finds the w∗ for which the
derivative ∇ 1

2‖Aw
∗ − y‖22 = AT (Aw∗ − y) is zero, i.e. the w∗ for which ATAw∗ = AT y. By invertability of

ATA,
w∗ = (ATA)−1AT y

Note that if rank(ATA) < n, then we can apply a regularization term R(h) to help us get around the rank
issue and simultaneously bias our solution toward “simpler” hypotheses. Regularized ERM finds

argmin
w∈Rn

`(h;S) +R(h) = argmin
w∈Rn

1

2
‖Aw − y‖22 −

λ

2
‖w‖22

for λ being the regularization parameter. Then w∗ should satisfy (ATA+ λI)w∗ −AT y = 0, i.e.

w∗ = (ATA+ λI)−1AT y

4 Loss Estimation

The basic steps of learning are extensions of estimation; if we can’t estimate, we can’t learn. In this section,
we aim to find a low-variance unbiased estimator of `(h;D).

Definition 9. A random variable Z is an unbiased estimator of a value z if Exp [Z] = z.

Toward this end, we let a test set S = {(xi, yi)}mi=1 be such that S ∼ Dm.

4.1 Review of Probability Theory

Let Ω denote the sample space, e.g. the space of all test sets; w ∈ Ω is a set of m examples. Let F be a
set of events. In this course, events will usually be defined to capture the notion of a “good” test set. A
random variable Z : Ω→ R allows us to treat a random object in Ω as a number. For example, the feature
vector X(u) is a random variable of input u. A random variable is “simple” if it takes on a finite number of
non-negative values.

5

Definition 10. The expectation of a simple random variable Z taking on values in {z1, . . . , zk} is

Exp [Z] =

k∑
i=1

ziPr [Z = zi]

In general, random variables need not be discrete. They need not even be continuous. The following
definition generalizes the definitions of expectation for both discrete and continuous random variables. The
interested reader is referred to the course references for more information.

Definition 11. For general non-negative random variables Z,

Exp [Z] = sup
Y≤a.s.Z

Exp [Y]

where Y is simple and is almost surely less than or equal to Z.

Definition 12. The variance of a random variable Z measures the average deviation from the expectation.

Var(Z) = Exp
[
(Z − Exp [Z])2

]
Sometimes it will be more useful to use the identity

Var(Z) = Exp
[
Z2
]
− (Exp [Z])2

Understanding `(h;S) as an estimator of risk

Now we can discuss loss estimation more rigorously. Let the random variable Zi = `(h; (xi, yi)) where (xi, yi)
is the ith example from the random test set S ∼ D. Then,

Exp [`(h;S)] =
1

m

m∑
i=1

Exp [`(h; (xi, yi))] = `(h;D)

since Exp [`(h; (xi, yi))] = `(h;D) for all (xi, yi) ∈ S. Therefore, when S ∼ Dm, empirical risk is an unbiased
estimator for risk.

Toward understanding its variance, define Z = `(h;S) = 1
m

∑m
i=1 Zi. Since Zi is independent from Zj

for all i 6= j, V ar(
∑m
i=1 Zi) =

∑m
i=1 Var(Zi). Therefore,

Var(Z) = Var(
1

m

m∑
i=1

Zi)

=
1

m2

m∑
i=1

Var(Zi)

=
1

m
Var(Z1)

Note that as more examples are sampled, the variance becomes tighter.

Theorem 13 (Markov’s inequality). For any random variable X ≥ 0, for any ε > 0, Pr [X ≥ ε] ≤ Exp[X]
ε .

Theorem 14 (Chebyshev’s inequality). For any random variable X ≥ 0 such that Var(X) exists, for any
ε > 0,

Pr [|X − Exp [X]| ≥ ε] ≤ Var(X)

ε2

Chebyshev’s inequality and our observation about Var(Z) immediately imply the following.

6

Theorem 15. Let Z1, . . . , Zm be i.i.d. random variables with σ2 = Var(Z1) < ∞ and µ = Exp [Z]. Let
Z = 1

m

∑m
i=1 Zi. Then, for every ε > 0,

Pr [|Z − µ| > ε] ≤ σ2

mε2

One can interpret ε as being the accuracy parameter, m the sample size, and δ = σ2

mε2 as being the level
of confidence.

Corollary 16. Let Z1, . . . , Zm be i.i.d. random variables with σ2 = Var(Z1) < ∞ and µ = Exp [Z]. Let
Z = 1

m

∑m
i=1 Zi. Then, for every δ > 0,

Pr

[
|Z − µ| >

√
σ2

mδ

]
≤ δ

Understanding the tradeoff between these three parameters will be a recurring theme throughout this
course. The following table summarizes the interaction between them.

m ε δ

m ε σ2

mε2

m
√

σ2

mδ δ

σ2

δε2 ε δ

7

