1.6 Expected Value

A random variable X is **continuous** if there is a function f, called its density function, so that $P(X \leq x) = \int_{-\infty}^{x} f(t)dt$ for all x. A random variable is **discrete** if it can only take a countable number of different values. In elementary textbooks you usually see two separate definitions for expected value:

$$E[X] = \begin{cases} \sum_{i} x_{i} P(X = x_{i}) & \text{if } X \text{ is discrete} \\ \int x f(x) dx & \text{if } X \text{ is continuous with density } f. \end{cases}$$

But it's possible to have a random variable which is neither continuous nor discrete. For example, with $U \sim U(0,1)$, the variable

 $X = UI_{U>.5}$ is neither continuous nor discrete. It's also possible to have a sequence of continuous random variables which converges to a discrete random variable – or vice versa. For example, if $X_n = U/n$, then each X_n is a continuous random variable but $\lim_{n\to\infty} X_n$ is a discrete random variable (which equals zero). This means it would be better to have a single more general definition which covers all types of random variables. We introduce this next.

A **simple** random variable is one which can take on only a finite number of different possible values, and its expected value is defined as above for discrete random variables. Using these, we next define the expected value of a more general non-negative random variable. We will later define it for general random variables X by expressing it as the difference of two nonnegative random variables $X = X^+ - X^-$, where $x^+ = \max(0, x)$ and $x^- = \max(-x, 0)$.

Definition 1.24 If $X \ge 0$, then we define

$$E[X] \equiv \sup_{\textit{all simple variables } Y \leq X} E[Y].$$

We write $Y \leq X$ for random variables X,Y to mean $P(Y \leq X) = 1$, and this is sometimes written as " $Y \leq X$ almost surely" and abbreviated " $Y \leq X$ a.s.". For example if X is nonnegative and $a \geq 0$ then $Y = aI_{X \geq a}$ is a simple random variable such that $Y \leq X$. And by taking a supremum over "all simple variables" we of course mean the simple random variables must be measurable with respect to some given sigma field. Given a nonnegative random variable X, one concrete choice of simple variables is the sequence $Y_n = \min(\lfloor 2^n X \rfloor/2^n, n)$, where $\lfloor x \rfloor$ denotes the integer portion of x. We ask you in exercise 17 at the end of the chapter to show that $Y_n \uparrow X$ and $E[X] = \lim_n E[Y_n]$.

Another consequence of the definition of expected value is that if $Y \leq X$, then $E[Y] \leq E[X]$.

Given any random variable $X \geq 0$ with $E[X] < \infty$, and any $\epsilon > 0$, we can find a simple random variable Y with $E[X] - \epsilon \leq E[Y] \leq E[X]$. Our definition of the expected value also gives what is called the Lebesgue integral of X with respect to the probability measure P, and is sometimes denoted $E[X] = \int X dP$.

So far we have only defined the expected value of a nonnegative random variable. For the general case we first define $X^+ = XI_{X\geq 0}$ and $X^- = -XI_{X<0}$ so that we can define $E[X] = E[X^+] - E[X^-]$, with the convention that E[X] is undefined if $E[X^+] = E[X^-] = \infty$.

Remark 1.27 The definition of expected value covers random variables which are neither continuous nor discrete, but if X is continuous with density function f it is equivalent to the familiar definition $E[X] = \int x f(x) dx$. For example when $0 \le X \le 1$ the definition of the Riemann integral in terms of Riemann sums implies, with $\lfloor x \rfloor$ denoting the integer portion of x,

$$\int_0^1 x f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} x f(x) dx$$

$$\leq \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{i+1}{n} P(i/n \leq X \leq \frac{i+1}{n})$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} i/n P(i/n \leq X \leq \frac{i+1}{n})$$

$$= \lim_{n \to \infty} E[\lfloor nX \rfloor / n]$$

$$\leq E[X],$$

where the last line follows because $\lfloor nX \rfloor / n \leq X$ is a simple random variable.

Using that the density function g of 1 - X is g(x) = f(1 - x), we obtain

$$1 - E[X] = E[1 - X]$$

$$\geq \int_0^1 x f(1 - x) dx$$

$$= \int_0^1 (1 - x) f(x) dx$$

$$= 1 - \int_0^1 x f(x) dx.$$