1.6 Expected Value

A random variable X is continuous if there is a function f, called its density function, so that $P(X \leq x)=\int_{-\infty}^{x} f(t) d t$ for all x. A random variable is discrete if it can only take a countable number of different values. In elementary textbooks you usually see two separate definitions for expected value:

$$
E[X]=\left\{\begin{array}{cc}
\sum_{i} x_{i} P\left(X=x_{i}\right) & \text { if } X \text { is discrete } \\
\int x f(x) d x & \text { if } X \text { is continuous with density } f .
\end{array}\right.
$$

But it's possible to have a random variable which is neither continuous nor discrete. For example, with $U \sim U(0,1)$, the variable $X=U I_{U>.5}$ is neither continuous nor discrete. It's also possible to have a sequence of continuous random variables which converges to a discrete random variable - or vice versa. For example, if $X_{n}=U / n$, then each X_{n} is a continuous random variable but $\lim _{n \rightarrow \infty} X_{n}$ is a discrete random variable (which equals zero). This means it would be better to have a single more general definition which covers all types of random variables. We introduce this next.

A simple random variable is one which can take on only a finite number of different possible values, and its expected value is defined as above for discrete random variables. Using these, we next define the expected value of a more general non-negative random variable. We will later define it for general random variables X by expressing it as the difference of two nonnegative random variables $X=X^{+}-X^{-}$, where $x^{+}=\max (0, x)$ and $x^{-}=\max (-x, 0)$.

Definition 1.24 If $X \geq 0$, then we define

$$
E[X] \equiv \sup _{\text {all simple variables } Y \leq X} E[Y] .
$$

We write $Y \leq X$ for random variables X, Y to mean $P(Y \leq$ $X)=1$, and this is sometimes written as " $Y \leq X$ almost surely" and abbreviated " $Y \leq X$ a.s.". For example if X is nonnegative and $a \geq 0$ then $Y=a I_{X \geq a}$ is a simple random variable such that $Y \leq X$. And by taking a supremum over "all simple variables" we of course mean the simple random variables must be measurable with respect to some given sigma field. Given a nonnegative random variable X, one concrete choice of simple variables is the sequence $Y_{n}=\min \left(\left\lfloor 2^{n} X\right\rfloor / 2^{n}, n\right)$, where $\lfloor x\rfloor$ denotes the integer portion of x. We ask you in exercise 17 at the end of the chapter to show that $Y_{n} \uparrow X$ and $E[X]=\lim _{n} E\left[Y_{n}\right]$.

Another consequence of the definition of expected value is that if $Y \leq X$, then $E[Y] \leq E[X]$.

Given any random variable $X \geq 0$ with $E[X]<\infty$, and any $\epsilon>0$, we can find a simple random variable Y with $E[X]-\epsilon \leq$ $E[Y] \leq E[X]$. Our definition of the expected value also gives what is called the Lebesgue integral of X with respect to the probability measure P, and is sometimes denoted $E[X]=\int X d P$.

So far we have only defined the expected value of a nonnegative random variable. For the general case we first define $X^{+}=X I_{X \geq 0}$ and $X^{-}=-X I_{X<0}$ so that we can define $E[X]=E\left[X^{+}\right]-E\left[X^{-}\right]$, with the convention that $E[X]$ is undefined if $E\left[X^{+}\right]=E\left[X^{-}\right]=\infty$.

Remark 1.27 The definition of expected value covers random variables which are neither continuous nor discrete, but if X is continuous with density function f it is equivalent to the familiar definition $E[X]=\int x f(x) d x$. For example when $0 \leq X \leq 1$ the definition of the Riemann integral in terms of Riemann sums implies, with $\lfloor x\rfloor$ denoting the integer portion of x,

$$
\begin{aligned}
\int_{0}^{1} x f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \int_{i / n}^{(i+1) / n} x f(x) d x \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{i+1}{n} P\left(i / n \leq X \leq \frac{i+1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} i / n P\left(i / n \leq X \leq \frac{i+1}{n}\right) \\
& =\lim _{n \rightarrow \infty} E[\lfloor n X\rfloor / n] \\
& \leq E[X]
\end{aligned}
$$

where the last line follows because $\lfloor n X\rfloor / n \leq X$ is a simple random variable.

Using that the density function g of $1-X$ is $g(x)=f(1-x)$, we obtain

$$
\begin{aligned}
1-E[X] & =E[1-X] \\
& \geq \int_{0}^{1} x f(1-x) d x \\
& =\int_{0}^{1}(1-x) f(x) d x \\
& =1-\int_{0}^{1} x f(x) d x
\end{aligned}
$$

