
Iterative Methods in Combinatorial
Optimization

R. Ravi1∗
Tepper School of Business

Carnegie Mellon University

Pittsburgh, USA

ravi@cmu.edu

ABSTRACT. We describe a simple iterative method for proving a variety of results in combinatorial
optimization. It is inspired by Jain’s iterative rounding method (FOCS 1998) for designing approx-
imation algorithms for survivable network design problems, and augmented with a relaxation idea
in the work of Lau, Naor, Salvatipour and Singh (STOC 2007) on designing an approximation al-
gorithm for its degree bounded version. At the heart of the method is a counting argument that
redistributes tokens from the columns to the rows of an LP extreme point. This token argument
was further refined to fractional assignment and redistribution in work of Bansal, Khandekar and
Nagarajan on degree-bounded directed network design (STOC 2008).
In this presentation, we introduce the method using the assignment problem, describe its applica-
tion to showing the integrality of Edmond’s characterization (1971) of the spanning tree polyhedron,
and then extend the argument to show a simple proof of the Singh and Lau’s approximation algo-
rithm (STOC 2007) for its degree constrained version, due to Bansal, Khandekar and Nagarajan. We
conclude by showing how Jain’s original proof can also be simplified by using a fractional token
argument (joint work with Nagarajan and Singh).
This presentation is extracted from an upcoming monograph on this topic co-authored with Lau and
Singh.

1 Introduction

Iterative methods are an important tool in the growing toolkit available for designing ap-

proximation algorithms based on linear programming relaxations. First we motivate our

method via the assignment problem. Through this problem we highlight the basic ingredi-

ents and ideas of the method and provide an outline of how a typical result proved using

this method is structured. In the following sections, we apply this method to the classical

minimum spanning tree problem, and extend it to derive an approximation algorithm for

the degree-bounded version. In the last section, we present an application to re-derive an

old result of Jain on LP extreme points for survivable network design problems.

The Assignment Problem: Consider the classical assignment problem: Given a bipar-

tite graph G = (U ∪ V, E) with |U| = |V| and weight function w : E → R+, the objective is

to match every vertex in U with a distinct vertex in V to minimize the total weight (cost) of

the matching. This is also called the minimum weight bipartite perfect matching problem

in the literature, and is a fundamental problem in combinatorial optimization.

One approach to the assignment problem is to model it as a linear programming prob-

lem. A linear program is a mathematical formulation of the problem with a system of linear

∗Supported in part by NSF grant CCF-0728841.

c© Ravi; licensed under Creative Commons License-NC-ND

2 ITERATIVE METHODS

constraints which can contain both equalities and inequalities, and also a linear objective

function that is to be maximized or minimized. In the assignment problem, we associate a

variable xuv for every (u, v) ∈ E. Ideally, we would like the variables to take one of two val-

ues, zero or one (hence in the ideal case, they are binary variables). When xuv is set to one,

we intend the model to signal that this pair is matched; when xuv is set to zero, we intend

the model to signal that this pair is not matched. The following is a linear programming

formulation of the assignment problem.

minimize ∑
u,v

wuv xuv

subject to ∑
v:{u,v}∈E

xuv = 1 ∀ u ∈ U

∑
u:{u,v}∈E

xuv = 1 ∀ v ∈ V

xuv ≥ 0 ∀ {u, v} ∈ E

The objective function is to minimize the total weight of the matching, while the two sets of

linear equalities ensure that every vertex in U is matched to exactly one vertex in V in the

assignment and vice-versa.

A fundamental result in the Operations Research literature [8] is the polynomial time

solvability (as well as the practical tractability) of linear programming problems. There is

also a rich theory of optimality (and certificates for it) that has been developed (see e.g.,

the text by Chvatal [3]). Using these results, we can solve the problem we have formulated

above quite effectively for even very large problem sizes.

Returning to the formulation however, our goal is to find a ”binary” assignment of

vertices inU to vertices inV, but in the solution returned, the x-variables may take fractional

values. Nevertheless, for the assignment problem, a celebrated result that is a cornerstone of

combinatorial optimization [2] states that for any set of weights that permit a finite optimal

solution, there is always an optimal solution to the above LP (linear program) that takes

binary values in all the x-variables.

Such integrality results of LPs are few and far between, but reveal rich underlying struc-

ture for efficient optimization over the large combinatorial solution space [13]. They have

been shown using special properties of the constraint matrix of the problem (such as total

unimodularity), or of the whole linear system including the right hand side (such as total

dual integrality). This article is about a simple and fairly intuitive method that is able to

re-prove many (but not all) of the results obtained by these powerful methods. One advan-

tage of our approach is that it can be used to incorporate additional constraints that make

the problem computationally hard, and allow us to derive good approximation algorithms

with provable performance guarantee for the constrained versions.

2 Iterative Algorithm

Our method is iterative. Using the following two steps, it works inductively to show that

the LP has an integral optimal solution.

RAVI FSTTCS 2009 3

• If any xuv is set to 1 in an optimal solution to the LP, then we take this pair as matched

in our solution, and delete them both to get a smaller problem, and proceed to the next

iteration.

• If any variable xuv is set to 0 in the optimal solution, we remove the edge (u, v) to

again get a smaller problem (since the number of edges reduces by 1) and proceed to

the next iteration.

We continue the above iterations till all variables have been fixed to either 0 or 1. Given

the above iterative algorithm, there are two claims that need to be proven. Firstly, that the

algorithmworks correctly, i.e., it can always find a variable with value 0 or 1 in each iteration

and secondly, the matching selected is an optimal (minimum weight) matching. Assuming

the first claim, the second claim can be proved by a simple inductive argument. The crux of

the argument is that in each iteration our solution pays exactly what the fractional optimal

solution pays. Moreover, the fractional optimal solution when restricted to the residual

problem remains feasible for the residual problem. This allows us to apply an inductive

argument to show that the matching we construct has the same weight as the fractional

optimal solution, and is thus optimal. For the first claim, it is not clear a-priori that one

can always find a variable with value 1 or 0 at every step. However, we use the important

concept of the extreme point (or vertex) solutions of linear program to show that the above

iterative algorithm works correctly.

DEFINITION 1. Let P = {x : Ax = b, x ≥ 0} ⊆ R
n. Then x ∈ R

n is an extreme point

solution of P if there does not exist a non-zero vector y ∈ R
n such that x + y, x− y ∈ P.

Extreme point solutions are also known as vertex solutions and are equivalent to ba-

sic feasible solutions [3]. The following basic result shows that there is always an optimal

extreme point solution to bounded linear programs.

LEMMA 2. Let P = {x : Ax = b, x ≥ 0} and assume that the optimum value min{cTx :

x ∈ P} is finite. Then for any feasible solution x ∈ P, there exists an extreme point solution
x′ ∈ P with cTx′ ≤ cTx.

The following “Rank lemma” is an important ingredient in the correctness proofs of all

iterative algorithms.

LEMMA 3. Let P = {x : Ax = b, x ≥ 0} and let x be an extreme point solution of P such
that xi > 0 for each i. Then the number of variables is equal to the number of linearly

independent constraints of A, i.e. the rank of A.

2.1 Contradiction Proof Idea: Lower Bound > Upper Bound

We give an outline of the proof that at each iteration there exists a variable with value 0 or

1. Suppose for contradiction that 0 < xe < 1 for every edge e. We use this assumption

to derive a lower bound on the number of variables of the linear program. Let n be the

remaining vertices in U (or V, they have the same cardinality) at the current iteration. Then

each vertex in U must have two edges incident on it, since ∑v∈V:(u,v)∈E xuv = 1 and xuv < 1

for each (u, v) ∈ E. Thus the total number of edges is at least 2n. This is a lower bound on

the number of variables of the linear program, since we have one variable for each edge.

4 ITERATIVE METHODS

On the other hand, using the Rank Lemma, we derive an upper bound on the number of

variables of the linear program. In the linear program for bipartite matching, we have only

2n constraints (one for each vertex in U ∪V). Moreover, these 2n constraints are dependent

since the sumof the constraints for vertices inU equals the sumof the constraints for vertices

in V. Hence, the number of linearly independent constraints is at most 2n− 1. By the Rank

Lemma, the number of variables is at most 2n − 1. This provides us an upper bound on

the number of variables. Since our upper bound is strictly smaller than the lower bound,

we obtain the desired contradiction. Therefore, in an extreme point solution of the linear

program for bipartite matching, there must exist a variable with value 0 or 1, and thus the

iterative algorithm works. The number of iterations can be simply bounded by the number

of edges in the bipartite graph.

3 Outline of the Approach

Wenow give a brief outline of the approach to designing algorithmswith this approach. The

method can be used to prove the integrality of the LP relaxation of a well-studied problem,

and once this is well understood, the iterative proof of integrality can be extended to design

approximation algorithms for NP-hard variants of the basic problems. Both components

follow the natural outline described below.

1. Linear Programming Formulation: We start by giving a linear programming relax-

ation for the optimization problem we study. If the problem is polynomially solvable,

this relaxation will be one with integral extreme points and that is what we will set

out to show. If the problem is NP-hard, we state an approximation algorithmic result

which we then set out to prove.

(a) Solvability: Sometimes the linear programming relaxation we start with will be

exponential in size. We then show that the linear program is solvable in poly-

nomial time. Usually, this would entail providing a polynomial time separation

oracle for the program using the formalism of the ellipsoid method [7]. Infor-

mally, the separation oracle is a procedure that certifies that any given candidate

solution for the program is either feasible or not and in the latter case provides

a separating hyperplane which is a violated inequality of the formulation. In

programs with an exponential number of such inequalities that are implicity de-

scribed, the design of the separation oracle is itself a combinatorial optimization

problem, and we sketch the reduction to one.

2. Characterization of Extreme Point Solution: We then give a characterization result for

the optimal extreme point solutions of the linear program based on the Rank Lemma 3.

This part aims to show that any maximal set of independent tight constraints at this

extreme point solution can be captured by a sparse structure. Sometimes the proof of

this requires the use of the uncrossing technique [2] in combinatorial optimization.

3. Iterative Algorithm: We present an iterative algorithm for constructing an integral

solution to the problem from the vertex solution. The algorithm has two simple steps.

(a) If there is a variable in the optimal vertex solution that is set to a value of 1, then

include the element in the integral solution.

(b) If there is a variable in the optimal vertex solution that is set to a value of 0, then

RAVI FSTTCS 2009 5

remove the corresponding element.

In each of the above cases, at each iteration, we reduce the problem and arrive at a

residual version and iterate until all variables have been set this way. In designing

approximation algorithms we also use the rounding and relaxation steps as stated

earlier.

4. Analysis: We then analyze the algorithm. This involves arguing the following two

facts. First, we establish that the algorithm runs correctly and second, that it returns

an optimal solution.

(a) Correctness: We show that the iterative algorithm is correct by arguing that there

is always a 1-element or a 0-element to pick in every iteration. This crucially uses

the characterization of tight constraints at this optimal extreme point solution.

The argument here also follows the same contradiction proof idea (lower bound

> upper bound): We assume for a contradiction that there is no 1-element or

0-element and get a large lower bound on the number of nonzero variables in

the optimal extreme point solution. On the other side, we use the sparsity of the

independent tight constraints to show an upper bound on the number of such

constraints. This then contradicts the rank lemma that insists that both these

numbers are equal, and proves that there is always a 1- or 0-element.

(b) Optimality: We finally show that the iterative algorithm indeed returns an opti-

mal solution using a simple inductive argument. The crux of this argument is to

show that the extreme point solution induced on the residual problem remains

a feasible solution to this residual problem.

3.1 Approximation Algorithms for NP-hard Problems

The above framework can be naturally adapted to provide an approximation algorithm via

the iterative method. In particular, for this, the iterative algorithm above typically has one

or both of two additional steps: Rounding and Relaxation.

1. Rounding: Fix a threshold α ≥ 1. If there is a variable xi which in the optimal extreme

point solution has a value of at least 1
α then include the corresponding element in the

solution.

Adding this rounding step does not allow us to obtain optimal integral solution but

only near-optimal solutions. Using the above step, typically one obtains an approxi-

mation ratio of 1
α for covering problems addressed using this framework.

2. Relaxation: Fix a threshold β. If there is a constraint ∑i aixi ≤ b such that ∑i ai ≤ b+ β

then remove the constraint in the residual formulation.

The iterative relaxation step removes a constraint and hence this constraint can be

violated in later iterations. But the condition on the removal of the constraints ensures

that the constraint is only violated by an additive amount of β. This step enables us to

obtain additive approximation algorithms for a variety of problems.

To summarize, for designing approximation algorithms, we first study the exact op-

timization problem in the above framework. We then use the above two steps in various

combinations to derive strong approximation algorithms for constrained versions of these

exact problems.

6 ITERATIVE METHODS

4 Minimum Spanning Trees

In an instance of the Minimum Spanning Tree (MST) problem we are given an undirected

graph G = (V, E), edge costs given as c : E → R, and the task is to find a spanning tree of

minimum total edge cost.

4.1 Linear Programming Relaxation

An exact linear formulation for the convex hull of integral spannign trees is the subtour

elimination LP which is related to the study of the Traveling Salesman Problem. For S ⊆ V,

define E(S) to be the set of edges with both endpoints in S. For a spanning tree, there are

at most |S| − 1 edges in E(S), where |S| denotes the number of vertices in S. Insisting on

this for every set by using the constraint (2) eliminates all the potential subtours that can be

formed in the LP solution: this is how the formulation gets its name.

minimize ∑
e∈E

ce xe (1)

subject to x(E(S)) ≤ |S| − 1 ∀ ∅ 6= S ⊂ V (2)

x(E(V)) = |V| − 1 (3)

xe ≥ 0 ∀ e ∈ E (4)

We will present an iterative algorithm which will prove that the subtour LP is integral.

THEOREM 4. Every extreme point solution to the subtour LP is integral and corresponds to
the characteristic vector of a spanning tree.

Before we give the iterative algorithm and proof of Theorem 4, we show that one can

optimize over the subtour LP in polynomial time. We show this giving a polynomial time

separation oracle for the constraints in subtour LP. Polynomial time solvability now follows

from results on the equivalence of separation and optimization [7].

THEOREM 5. There is a polynomial time separation oracle for the subtour LP.

PROOF. The separation oracle, given a fractional solution x, needs to find a set S ⊆ V such

that x(E(S)) > |S| − 1 if such a set exists. It is easy to check the equality x(E(V)) = |V| − 1.

Thus, checking the inequality for S is equivalent to checking if minS{|S| − 1− x(E(S))} < 0.

Using x(E(V)) = |V| − 1 we obtain that it is enough to check minS{|S| − 1 + x(E(V)) −
x(E(S)} < |V| − 1} or equivalently if minS{|S|+ x(E(V))− x(E(S)} < |V|}.

We set up a min-cut problem in a new digraph D with a new source s and new sink t.

We also have one node in the digraph per edge e in the support (i.e., with xe > 0) and a node

per vertex of G. The source s has an arc to every edge e with capacity xe. For every edge

e = i, j in G, its corresponding node in D has two arcs of infinite capacity, one to each of the

vertices i and j. Finally, every vertex i has an arc of unit capacity to t. To find a violated cut,

we need to check if the min s− t cut is smaller than |V|.
Suppose there is a violated set S with x(E(S)) > |S| − 1. Then consider the cut formed

by including on the side of s, all the nodes ofD corresponding to edges in E(S) as well as the

RAVI FSTTCS 2009 7

vertices of S. The set of arcs coming out of this cut are those coming out of the vertices of S

and hence have capacity |S|. All edges not in E(S), namely in E(V)− E(S), must now have

their incoming arc from s in the cut for a total capacity contribution of x(E(V))− x(E(S)).
Thus a violated cut will have cut value less than |V|.

Conversely, suppose the min-cut solution returns one of value less than |V|: we show

how to extract a violated set from it. Since every node in D corresponding to an edge e

of G has both its outgoing arcs with infinite capacity, if such a node (say e = i, j) is in the

s-side of the min cut, then both its successors (i.e. both i and j) must also be in the s-side of

the minimum cut. Similarly, if we take all the vertices of G in the s-side of the min-cut, all

edges of G which do not have both their endpoints in this set will have to lie on the t-side

of this cut. If the min-cut found has the set S′ in the s-side of the cut, the capacity of the

cut is precisely |S| (from the unit arcs going from these nodes to t) plus the x-value of all

edges that do not have both end points in S, namely x(E(V))− x(E(S′)) as required. If this

min-cut value is less than |V|, we can see that S′ is a violating set.

4.2 Characterizations of Extreme Point Solutions via the Uncrossing Technique

In this subsection, we analyze the extreme point solution to the subtour LP. Recall that an

extreme point solution is the unique solution defined by n linearly independent tight in-

equalities, where n is the number of variables in the linear program. There are exponen-

tially many inequalities in the subtour LP, and an extreme point solution may satisfy many

inequalities as equalities. To analyze an extreme point solution, an important step is to find

a “good” set of tight inequalities defining it. If there is an edge e with xe = 0, this edge

can be removed from the graph without affecting the feasibility and the objective value. So

henceforth assume every edge e has xe > 0.

The uncrossing technique is a powerful technique and we shall use it to find a good set

of tight inequalities for an extreme point solution in the subtour LP. Let E(X,Y) denotes the
set of edges with one endpoint in X and the other endpoint in Y, and let E(X) = E(X,X)
denote the set of edges of G induced in X ⊆ V(G). For a set F ⊆ E, let χ(F) denote the

vector in R
|E| that has an 1 corresponding to each edge e ∈ F, and 0 otherwise. This vector

is called the characteristic vector of F. The following proposition is straightforward.

PROPOSITION 6. For X,Y ⊆ V,

χ(E(X)) + χ(E(Y)) ≤ χ(E(X ∪Y)) + χ(E(X ∩Y)),

and equality holds if and only if E(X \Y,Y \ X) = ∅.

PROOF. Observe that

χ(E(X)) + χ(E(Y)) = χ(E(X ∪Y)) + χ(E(X ∩Y))− χ(E(X \Y,Y \ X))

and proof follows immediately.

Given an extreme point solution x to the subtour LP, let F = {S | x(E(S)) = |S| − 1}
be the family of tight inequalities for an extreme point solution x in the subtour LP. The

following lemma shows that this family is closed under intersection and union.

8 ITERATIVE METHODS

LEMMA 7. If S, T ∈ F and S ∩ T 6= ∅, then both S ∩ T and S ∪ T are in F . Furthermore,
χ(E(S)) + χ(E(T)) = χ(E(S ∩ T)) + χ(E(S ∪ T)).

PROOF. Observe that

|S| − 1+ |T| − 1 = x(E(S)) + x(E(T))

≤ x(E(S ∩ T)) + x(E(S ∪ T)))

≤ |S ∩ T| − 1+ |S ∪ T| − 1

= |S| − 1+ |T| − 1.

The first equality follows from the fact that S, T ∈ F . The second inequality follows from

Proposition 6. The third inequality follows from the constraints for S ∩ T and S ∪ T in the

subtour LP. The last equality is because |S|+ |T| = |S ∩ T|+ |S ∪ T| for any two sets S, T.

Equality must hold everywhere and we have x(E(S∩ T)) + x(E(S∪ T)) = |S∩ T| − 1+ |S∪
T| − 1. Thus, we must have equality for constraints for S ∩ T and S ∪ T, i.e., x(E(S ∩ T)) =
|S ∩ T| − 1 and x(E(S ∪ T)) = |S ∪ T| − 1, which implies that S ∩ T and S ∪ T are also

in F . Moreover, equality holds for Proposition 6 and thus χ(E(S \ T, T \ S)) = ∅ and

χ(E(S)) + χ(E(T)) = χ(E(S ∩ T)) + χ(E(S ∪ T)).

Denote by span(F) the vector space generated by the set of vectors {χ(E(S)) | S ∈ F}.
Call two sets X,Y intersecting if X ∩ Y, X − Y and Y − X are nonempty. A family of sets is

laminar if no two sets are intersecting. The following lemma says that an extreme point solu-

tion is characterized by tight inequalities whose corresponding sets form a laminar family.

This is a crucial structure theorem on the extreme point solutions for the subtour LP.

LEMMA 8. If L is a maximal laminar subfamily of F , then span(L) = span(F).

PROOF. Suppose, by way of contradiction, that L is a maximal laminar subfamily of F
but span(L) ⊂ span(F). For any S /∈ L, define intersect(S,L) to be the number of sets

in L which intersect S, i.e. intersect(S,L) = |{T ∈ L | S and T are intersecting}|. Since

span(L) ⊂ span(F), there exists a set S with χ(E(S)) /∈ span(L). Choose such a set S

with minimum intersect(S,L). Clearly, intersect(S,L) ≥ 1; otherwise L ∪ {S} is also a

laminar subfamily, contradicting the maximality of L. Let T be a set in L which intersects

S. Since S, T ∈ F, by Lemma 7, both S ∩ T and S ∪ T are in F . Also, both intersect(S ∩
T,L) and intersect(S ∪ T,L) are smaller than intersect(S,L), which will be proved next

in Proposition 9. Hence, by the minimality of intersect(S,L), both S ∩ T and S ∪ T are in

span(L). By Lemma 7, χ(E(S)) + χ(E(T)) = χ(E(S∩ T)) + χ(E(S∪ T)). Since χ(E(S∩ T))
and χ(E(S ∪ T)) are in span(L) and T ∈ L, the above equation implies that χ(E(S)) ∈
span(L), a contradiction. It remains to prove Proposition 9.

PROPOSITION 9. Let S be a set that intersects T ∈ L. Then intersect(S∩T,L) and intersect(S∪
T,L) are smaller than intersect(S,L).

PROOF. Since L is a laminar family, for a set R ∈ L with R 6= T, R does not intersect T

(either R ⊂ T, T ⊂ R or T ∩ R = ∅). So, whenever R intersects S ∩ T or S ∪ T, R also

intersects S. Also, T intersects S but not S ∩ T or S ∪ T. Therefore, intersect(S ∩ T,L) and

intersect(S ∪ T,L) are smaller than intersect(S,L)

This completes the proof of Lemma 8.

RAVI FSTTCS 2009 9

4.3 Iterative 1-edge-finding Algorithm

In this section, we give an iterative procedure to find a minimum spanning tree from an

optimal extreme point solution of the subtour LP. The algorithm is shown in Figure 1. To

create the residual problem, the chosen edge e is contracted from G to identify its endpoints

to result in the graph G/e.

Iterative 1-edge-finding MST Algorithm

1. Initialization F ← ∅.

2. While V(G) 6= ∅ do

(a) Find an optimal extreme point solution x of the subtour LP and remove

every edge e with xe = 0 from G.

(b) Find an edge e = {u, v} such that xe = 1 and update F ← F ∪ {e}, G ←
G/e.

3. Return F.

Figure 1: Iterative 1-edge-finding MST Algorithm

4.4 Correctness and Optimality

LEMMA 10. For any extreme point solution x of the subtour LP with xe ≥ 0 for each edge e

there exists an edge f such that x f = 1.

PROOF. We assign one token for each edge e in the support E, for a total of |E| tokens. We

will redistribute the tokens so that each set in L will receive one token and there are some

extra tokens left. This implies that |E| > |L|, giving us the contradiction to Lemma 8 and

the Rank Lemma that together imply that |E| = |L|.
For each edge e, we redistribute xe to the smallest set containing both the endpoints.

Now, we show that each set in L can collect at least one token, and demonstrate some extra

leftover fractional edge tokens giving us the contradiction.

Let S be any set in L with children R1, . . . , Rk. We have

x(E(S)) = |S| − 1

and for each i,

x(E(Ri) = |Ri| − 1

Subtracting, we obtain

x(E(S))−∑
i

x(E(Ri)) = |S| −∑
i

|Ri|+ k− 1.

This implies that

x(A) = |S| −∑
i

|Ri|+ k− 1

where A = E(S) \ (∪iE(Ri)). Now S obtains exactly xe fractional token for each edge e in A.

If A = ∅, then χ(E(S)) = ∑i χ(E(Ri)) which contradicts the independence of these sets of

10 ITERATIVE METHODS

constraints in L. Moreover, x(A) is an integer and hence it is at least one, giving S the unit

token it needs.

Since every edge is not integral, we have the extra fractional token values of (1− xe)

for every edge as unused tokens giving the contradiction.

THEOREM 11. The Iterative MST Algorithm returns a minimum spanning tree in polyno-

mial time.

PROOF. This is proved by induction on the number of iterations of the algorithm. Note

that if the algorithm finds a 1-edge e, for any spanning tree T′ of G′ = G/e, we can construct

a spanning tree T = T′ ∪ {e} of G. Hence, the residual problem is to find a minimum

spanning tree on G/e, and the same procedure is applied to solve the residual problem

recursively.

Since xe = 1, the restriction of x to E(G′), denoted by xres, is a feasible solution to the

subtour LP for G′. Inductively, the algorithm will return a spanning tree F′ of G′ of cost at

most the optimal value of the subtour LP for G′, and hence c(F′) ≤ c · xres. Therefore,

c(F) = c(F′) + ce and c(F′) ≤ c · xres

which imply that

c(F) ≤ c · xres + ce = c · x

as xe = 1. Hence, the spanning tree returned by the algorithm is of cost no more than the

cost of an optimal LP solution x, which is a lower bound on the cost of a minimum spanning

tree. This shows that the algorithm returns a minimum spanning tree of the graph.

5 Minimum Bounded-Degree Spanning Trees

We next turn to the study of the MINIMUM BOUNDED-DEGREE SPANNING TREE (MBDST)

problem. In an instance of the MBDST problem we are given a graph G = (V, E), edge
cost given by c : E → R, a degree upper bound Bv for each v ∈ V and the task is to find a

spanning tree of minimum cost which satisfies the degree bounds. We prove the following

theorem originally due to Singh and Lau.

THEOREM 12. There exists a polynomial time algorithm which given an instance of the
MBDST problem returns a spanning tree T such that degT(v) ≤ Bv + 1 and cost of the tree

T is smaller than the cost of any tree which satisfies the degree bounds.

We prove Theorem 12 using the iterative relaxation technique.

5.1 Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST problem,

which we denote by LPmbdst(G, B,W). In the following we assume that degree bounds

are given for vertices only in a subsetW ⊆ V. Let B denote the vector of all degree bounds

Bv, one for each vertex v ∈W.

RAVI FSTTCS 2009 11

minimize ∑
e∈E

ce xe (5)

subject to x(E(V)) = |V| − 1 (6)

x(E(S)) ≤ |S| − 1 ∀∅ 6= S ⊂ V (7)

x(δ(v)) ≤ Bv ∀ v ∈ W (8)

xe ≥ 0 ∀ e ∈ E (9)

Separation over the inequalities in the above linear program can be carried out in poly-

nomial time and follows from Theorem 5. An alternative is to write a compact reformulation

of the above linear program which has polynomially many variables and constraints.

5.2 Characterization of Extreme Point Solutions

We first give a characterization of an extreme point solution of LPmbdst(G,B,W). We remove

all edges with xe = 0 and focus only on the support of the extreme point solution and the

tight constraints from (6)-(8). Let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of tight

constraints from (6)-(7). From an application of Rank Lemma 3 and the characterization of

extreme point solution to the spanning tree polyhedron (Lemma 8), we have the following

characterization.

LEMMA 13. Let x be any extreme point solution of LPmbdst(G,B,W) with xe > 0 for each
edge e ∈ E. Then there exists a set T ⊆W and a laminar family L such that

1. x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L.
2. The vectors {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.
3. |L|+ |T| = |E|.

5.3 An Additive One Approximation Algorithm

We now present an iterative algorithm which returns a tree of optimal cost and violates the

degree bound within an additive error of one. This algorithm removes degree constraints

one by one, and eventually reduces the problem to a minimum spanning tree problem.

This can be thought of as a simple extension of the 1-edge-finding iterative MST algorithm

presented earlier. The algorithm is given in Figure 2.

MBDST Algorithm

1. WhileW 6= ∅ do

(a) Find an optimal extreme point solution x of LPmbdst(G,B,W) and remove

every edge e with xe = 0 from G. Let the support of x be E.

(b) (Relaxation) If there exists a vertex v ∈ W with degE(v) ≤ Bv + 1, then

updateW ← W \ {v}.
2. Return E.

Figure 2: Additive One MBDST Algorithm

12 ITERATIVE METHODS

5.4 Correctness and Performance Guarantee

In the next lemma we prove that in each iteration, the algorithm can find some vertex for

which the degree constraint can be removed. Observe that once all the degree constraints

are removed we obtain the linear program for the minimum spanning tree problem which

we showed in Section 4 to be integral. Hence, the algorithm returns a tree. Moreover, at

each step we only relax the linear program. Hence, the cost of the final solution is at most

the cost of the initial linear programming solution. Thus the tree returned by the algorithm

has optimal cost. A simple inductive argument also shows that the degree bound is violated

by at most an additive one. The degree bound is violated only when we remove the degree

constraint and then degE(v) ≤ Bv + 1. Thus, in the worst case, if we include all the edges

incident at v in T, the degree bound of v is violated by at most an additive one.

It remains to show that the iterative relaxation algorithm finds a degree constraint to

remove at each step. From Lemma 13 we have that there exists a laminar family L ⊆ F
and T ⊆ W such that |L|+ |T| = |E| and constraints for sets in L are linearly independent.

Observe that if T = ∅ then only the spanning tree inequalities define the solution x. Hence,

xmust be integral. In the other case, we show that there must be a vertex inW whose degree

constraint can be removed.

LEMMA 14. Let x be an extreme point solution to LPmbdst(G, B,W) such that xe > 0. Let L
and T ⊆W correspond to the tight set constraints and tight degree constraints defining x as
given by Lemma 13. If T 6= ∅ then there exists some vertex v ∈ W with degE(v) ≤ Bv + 1.

PROOF. We use the fractional token argument as in the integrality proof of the 1-edge-

finding iterative MST algorithm we presented earlier.

Suppose for the sake of contradiction, we have T 6= ∅ and degE(v) ≥ Bv + 2 for each

v ∈ W. We now show a contradiction by a token argument. We give one token for each

edge in E. We then redistribute the token such that each vertex in T and each set in L gets

one token and we still have extra tokens left. This will contradict |E| = |T|+ |L|. The token
redistribution is as follows. Each edge e ∈ E gives as before xe tokens to the smallest set

in L containing both endpoints of e, and (1− xe)/2 to each of its endpoints for the degree

constraints.

We have already argued earlier that the xe assignment suffices to obtain one token per

member in the laminar family (see the proof of Lemma 10).

Thus it suffices to show that each vertex with a tight degree constraint gets one token.

Let v ∈ T be such a vertex. Then v receives (1− xe)/2 tokens for each edge incident at v for

a total of

∑
e∈δ(v)

1− xe
2

=
degE(v)− Bv

2
≥ 1,

where the first equality holds since ∑e∈δ(v) xe = Bv and the inequality holds since degE(v) ≥
Bv + 2 by Step 1b of the algorithm.

To finish the proof, we argue that there is some extra token left for contradiction. If

V /∈ L then there exists an edge e which is not contained in any set of L and the xe token

for that edge gives us the contradiction. Similarly, if there is a vertex v ∈ W \ T then v also

collects one token which it does not need and we get the desired contradiction. Moreover, if

RAVI FSTTCS 2009 13

there is a vertex v ∈ V \T then each edge e incident at vmust have xe = 1 else (1− xe)/2 > 0

tokens are extra. Note that e ∈ span(L) for each e with xe = 1, since e is a tight set of size

two. We have

2χ(E(V)) = ∑
v∈V

χ(δ(v)) = ∑
v∈T

χ(δ(v)) + ∑
v∈V−T

χ(δ(v)) = ∑
v∈T

χ(δ(v)) + ∑
v∈V−T

∑
e∈δ(v)

χ(e).

We have argued that V ∈ L and e ∈ span(L) for each edge e ∈ δ(v) for v ∈ V − T. Since

T 6= ∅, this implies the linear independence of the tight constraints in T and those in L,

giving us the contradiction.

5.5 Historical Notes

Edmonds [4] gave the integral linear programming relaxation for minimum spanning tree

problem that we presented. There is a long line of work of successively improving the

performance guarantees for the degree-boundedminimum-cost spanning tree problem. The

algorithm with additive guarantee of one for the unweighted case was first given by Fürer

and Raghavachari [5]. The additive algorithm with violation 2 (with both upper and lower

degree bounds) was presented by Goemans [6]. The algorithm with additive violation of 1

was first presented by Singh and Lau [14], also for the case with upper and lower bounds

on the degree. The fractional token proof which we used for the additive one proof was first

presented by Bansal et al. [1].

6 Survivable Network Design Problem

The survivable network design problem generalizes the minimum Steiner tree problem, the

minimum Steiner forest problem, and the minimum k-edge-connected subgraph problem,

etc. Hence the result in this section also applies to these problems.

6.1 Linear Programming Relaxation

To formulate the problem as a linear program, we represent the connectivity requirements

by a skew supermodular function. A function f : 2V → Z is called skew supermodular if at

least one of the two following conditions hold for any two subsets S, T ⊆ V.

f (S) + f (T) ≤ f (S ∪ T) + f (S ∩ T)

f (S) + f (T) ≤ f (S\T) + f (T\S)

It can be verified (with some simple case analysis) that the function f defined by f (S) =
maxu∈S,v/∈S ruv for each subset S ⊆ V is a skew supermodular function. Hence, one can write

the following linear programming relaxation for the survivable network design problem,

denoted by LPsndp.

minimize ∑
e∈E

ce xe

subject to x(δ(S)) ≥ f (S) ∀ S ⊆ V

0 ≤ xe ≤ 1 ∀ e ∈ E

14 ITERATIVE METHODS

This linear program for the case of minimum Steiner networks can be solved in polynomial

time by using a minimum cut algorithm as a separation oracle. Designing a separation

oracle for more general skew submodular functions as right hand sides needs more work -

details can be found in the original paper of Jain [9].

6.2 Characterization of Extreme Point Solutions

For a subset S ⊆ V, the corresponding constraint x(δ(S)) ≥ f (S) defines a vector in R
|E|:

the vector has an 1 corresponding to each edge e ∈ δ(S), and a 0 otherwise. We call this

vector the characteristic vector of δ(S), and denote it by χ(δ(S)). Recall that two sets X,Y

are intersecting if X ∩Y, X−Y and Y−X are nonempty, and that a family of sets is laminar

if no two sets are intersecting. It is not hard to verify the two inequalities below using the

submodularity of the cut function.

x(δ(X)) + x(δ(Y)) ≥ x(δ(X ∩Y)) + x(δ(X ∪Y)) and

x(δ(X)) + x(δ(Y)) ≥ x(δ(X − Y)) + x(δ(Y− X)).

For any two subsets X and Y, when f is skew supermodular, it follows from standard un-

crossing arguments, as in the case of spanning trees, that an extreme point solution to LPsndp
is characterized by a laminar family of tight constraints. The Lemma below then follows

from these uncrossing arguments and the Rank Lemma (Lemma 3).

LEMMA 15. Let the requirement function f of LPsndp be skew supermodular, and let x be an
extreme point solution to LPsndp with 0 < xe < 1 for every edge e ∈ E. Then, there exists a

laminar family L such that:

1. x(δ(S)) = f (S) for each S ∈ L.
2. The vectors χ(δ(S)) for S ∈ L are linearly independent.
3. |E| = |L|.

6.3 Iterative Algorithm

Jain’s iterative rounding algorithm is in Figure 3.

Iterative Algorithm for Minimum Steiner Network

1. Initialization F ← ∅, f ′ ← f ;

2. While f ′ 6= ∅ do

(a) Find an optimal extreme point solution x to LPsndp with cut requirement f ′ and

remove every edge e with xe = 0.

(b) If there exists an edge e with xe ≥ 1/2, then add e to F.

(c) For every S ⊆ V: update f ′(S)← f (S)− |δF(S)|.
3. Return H = (V, F).

Figure 3: Minimum Steiner Network Algorithm

RAVI FSTTCS 2009 15

6.4 Correctness and Performance Guarantee

Jain proved an important theorem about the extreme point solutions of LPsndp.

THEOREM 16.[Jain] Suppose f is an integral skew submodular function and x is an extreme

point solution to LPsndp. Then there exists an edge e ∈ E with xe ≥
1
2 .

Assuming Theorem 16, then the iterative algorithm will terminate successfully, and it

can be shown by a straightforward inductive argument that the returned solution is a 2-

approximate solution.

THEOREM 17. Algorithm 3 is a 2-approximation algorithm for the SURVIVABLE NETWORK

DESIGN problem.

PROOF. The proof is by induction on the number of iterations executed by the algorithm.

For the base case that requires only one iteration, the theorem follows since it rounds up

a single edge e with xe ≥
1
2 . For the induction step, let e′ be the edge with xe′ ≥

1
2 in

the current iteration, which is guaranteed to exist by Theorem 16. Let f ′ be the residual

requirement function after this iteration and let H′ be the set of edges picked in subsequent

iterations for satisfying f ′. The key observation is that the current solution x restricted to

E− e′ is a feasible solution for satisfying f ′, and thus by the induction hypothesis, the cost

of H′ is at most 2∑e∈E−e′ cexe. Consider H := H′ ∪ e′ which satisfies f (by the definition of

f ′). The cost of H is:

cost(H) = cost(H′) + ce′ ≤ 2 ∑
e∈E−e′

cexe + ce′ ≤ 2 ∑
e∈E

cexe,

where the last inequality follows because xe′ ≥
1
2 . This implies that the cost of H is at most

twice the cost of an optimal fractional solution, which is a lower bound of the optimal cost,

and thus the theorem follows.

We now give a simple proof of Jain’s theorem above using the fractional token idea

from the previous sections. This proof is due to Nagarajan et al. [12].

PROOF. We first prove that xe ≥
1
2 for some edge e ∈ E in any extreme point solution x

to LPSNDP. Suppose that 0 < xe <
1
2 for each e ∈ E. Then we will show that |E| > |L|,

contradicting Lemma 15. The proof is by a fractional token counting argument. We give

one token to each edge in E, and then we will reassign the tokens such that we can collect

one token for each member in L and still have extra tokens left, giving us the contradiction

that |E| > |L|. Each edge e = uv is given one token which is reassigned as follows.

1. (Rule 1) Let S ∈ L be the smallest set containing u and R ∈ L be the smallest set

containing v. Then e gives xe tokens each to S and R.

2. (Rule 2) Let T be the smallest set containing both u and v. Then e gives 1− 2xe tokens

to T.

We now show that each set S in L receives at least one token. Let S be any set with

children R1, . . . , Rk where k ≥ 0 (if S does not have any children then k = 0). We have the

following equalities.

x(δ(S)) = f (S)

x(δ(Ri)) = f (Ri) ∀ 1 ≤ i ≤ k

16 ITERATIVE METHODS

Subtracting we obtain,

x(δ(S))−∑
i

x(δ(Ri)) = f (S)−
k

∑
i=1

f (Ri). (10)

We divide the edges involved into three types, where

A = {e : |e ∩ (∪iRi)| = 0, |e ∩ S| = 1}

B = {e : |e ∩ (∪iRi)| = 1, |e ∩ S| = 2}

C = {e : |e ∩ (∪iRi)| = 2, |e ∩ S| = 2}.

Then (10) can be rewritten as:

x(A)− x(B)− 2x(C) = f (S)−
k

∑
i=1

f (Ri). (11)

Observe that A∪ B∪C 6= ∅; otherwise the characteristic vectors χ(δ(S)), χ(δ(R1)), . . . ,χ(δ(Rk))
are linearly dependent. For each edge e ∈ A, S receives xe tokens from e by Rule 1. For each

edge e ∈ B, S receives 1− xe tokens from e by Rule 1 and Rule 2. For each edge e ∈ C, S

receives 1− 2xe tokens from e by Rule 2. Hence, the total tokens received by S are exactly,

0 < ∑
e∈A

xe + ∑
e∈B

(1− xe) + ∑
e∈C

(1− 2xe)

= x(A) + |B| − x(B) + |C| − 2x(C)

= |B|+ |C|+ f (S)−
k

∑
i=1

f (Ri),

where the last equality follows from (11). Since f is integral, the right hand side is at least

one, and thus every set S ∈ L receives at least one token in the reassignment.

It remains to show that there are some unassigned tokens, which would imply the

contradiction that |E| > |L|. Let R be any maximal set in L. Consider any edge e ∈ δ(R).
The fraction of the token by Rule 2 for edge e is unassigned, as there is no setwith |T∩ e| = 2,

and gives us the desired contradiction.

References

[1] N. Bansal, R. Khandekar and V. Nagarajan, Additive guarantees for degree bounded directed

network design, in Proceedings of the Fourtieth Annual ACM Symposium on Theory of

Computing (STOC), 2008.

[2] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinatorial Opti-

mization, John Wiley and Sons, New York (1998).

[3] V. Chvatal, Linear Programming, Freeman, 1983.

[4] J. Edmonds,Matroids and the Greedy Algorithm. Mathematical Programming, 1:125–136,

1971.

RAVI FSTTCS 2009 17

[5] M. Fürer and B. Raghavachari, Approximating the minimum-degree Steiner tree to within

one of optimal, J. of Algorithms 17(3):409-423, 1994.

[6] M.X. Goemans, Minimum Bounded-Degree Spanning Trees, Proceedings of the 47th An-

nual IEEE Symposium on Foundations of Computer Science, 2006, 273–282.

[7] M. Grotschel, L. Lovasz, A. Schrijver The Ellipsoid Method and its Consequences in Combi-

natorial Optimization, Combinatorica 1 (1981), 169-197.

[8] F.S. Hillier and G.J. Lieberman, Introduction to Operations Research (6th Ed.), Mcgraw-

Hill, 1995.

[9] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Com-

binatorica, 21, pp.39-60, 2001. Preliminary version in Proc. 39th IEEE FOCS, 1998.

[10] L.C. Lau, S. Naor, M. Salavatipour andM. Singh, Survivable network design with degree or

order constraints, Proceedings of the 40th ACM Symposium on Theory of Computing,

651-660, 2007.

[11] L.C. Lau, R. Ravi andM. Singh, Iterative Methods in Combinatorial Optimization, In Prepa-

ration, 2009.

[12] V. Nagarajan, R. Ravi and M. Singh, Unified Analysis of LP Extreme Points for Steiner

Network and Traveling Salesman, submitted (2009).

[13] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer-Verlag, New

York, 2005.

[14] Mohit Singh and LapChi Lau,Approximating MinimumBoundedDegree Spanning Tress to

within One of Optimal, Proceedings of 39th ACM Symposium on Theory of Computing,

661-670, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

