
Lecture 16

Mechanism Design

May 20, 2005
Lecturer: Anna R. Karlin

Notes: Atri Rudra

Today we will talk about mechanism design which is also called Incentive Engineering. In a typical
problem in this area we need to satisfy certain goals in the presence of multiple self-interested parties with
private information. This is also sometimes called the “private value optimization problem”.

16.1 The Basics

We begin with some definitions and notations. Every agenti hastypeθi ∈ Θi. Unless otherwise mentioned
n would be the total number of agents. The set of all possible outcomes is denoted byO. Agent i has a
utility function for every typeθi ∈ Θi and outcomeo ∈ O and is denoted byui(θi, o). The set of strategies
available to agenti is denoted byΣi.

A mechanismis a functionf : Σ1 × Σ2 · · · × Σn → O. One can think of the mechanismf has a black
box to which every agenti submits a strategysi ∈ Σi depending on its typeθi. The mechanism then outputs
f(s1, s2, · · · , sn) as the outcome. We stress that this is a game of incomplete information in that the agents
do not know the payoff matrix (for example, in an auction setting, the valueui(·) is private and agenti does
not knowuj(·) for j 6= i). We next talk about solution concepts which are commonly used in mechanism
design.

16.2 Solution Concepts

16.2.1 Dominant Strategy Equilibrium

This implies every agent has a strategy which is “best” irrespective what strategy the other agents play.

16.2.2 Bayesian Nash Equilibrium

In this setting a common prior knowledge of the distribution on the types of agents is assumed. More
formally, it is assumed that everyone knows

F (Θ) = (F1(Θ1), F2(Θ2), · · · , Fn(Θn))
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whereFi(·) is the distribution for type for agenti. It is assumed thatFi(·) has all the “nice” properties like
it is continuous and differentiable. Each agent has a strategy (function)si ∈ Σi. In this setting each agenti
gets a typeθi which is drawn from the distributionFi(·). The agent then submitssi(θi) to the mechanism.
In this setting agenti knowsθi and the distributionF−i = F1 × · · ·Fi−1 × Fi+1 · · · × Fn and nothing else.

Definition 16.1. A strategy profile(s1(θ1), s2(θ2), · · · , sn(θn)) is in Bayesian Nash Equilibriumfor mech-
anismf if for all i, for all θi ∈ Θi and for alls′i ∈ Σi

Eθ−i [ui(f(si(θi), s−i(θ−i)), θi)] ≥ Eθ−i [ui(f(s′i(θi), s−i(θ−i)), θi)]

As an example consider theFirst Price Auction. Let Xi denote the random variable which denotes the
value for the (single) item for bidder (agent)i. θi is the outcome of sampling fromXi. Also assume that all
Xis are i.i.d from distribution functionF (·). Define a new random variableY = max(X1, X2 · · · , Xn−1).
Assume thatY is distributed according to the distributionG(·) and let the corresponding density function
be denoted byg(·).
Claim 1. The Bayesian Nash Equilibrium for the first price auction is given by

si(θi) = E[Y |Y ≤ θi]

Proof. With a slight abuse of notation (as in a continuous probability distribution, the probability of a single
point is not defined) it is easy to see that

E[Y |Y ≤ θi] =
∫

yPr[Y = y|Y ≤ θi]dy

More formally, it is

E[Y |Y ≤ θi] =
∫ θi

0
y · g(y)

G(θi)
dy

It is easy to see that this expectation is continuous and increasing (note that
∫ θi

0 g(y)dy = G(θi)). For the
rest of the proof we will drop the subscripti because all the strategies are symmetric (as all theXis are
i.i.d.).

We now have to argue thats(θ) = E[Y |Y ≤ θ] is the Bayesian Nash strategy. So assume not and let the
bidder on getting a typeθ bid s(θ′) (note that ass(·) is an increasing and continuous function such aθ′ 6= θ
exists). Now the bidder’s (expected) payoff on biddings(θ′) (instead ofs(θ)) is given by

G(θ′)[θ − s(θ′)]

The first term is the probability that the bidder would win on biddings(θ′) and the second term is the payoff
if she wins. Using the definition ofs(·) and expanding we get that the payoff is

G(θ′)[θ −
∫ θ′

0
y · g(y)

G(θ′)
dy]

= G(θ′)θ −
∫ θ′

0
yg(y)dy

= G(θ′)θ − yG(y) |θ′0 +
∫ θ′

0
G(y)dy

= G(θ′)(θ − θ′) +
∫ θ′

0
G(y)dy
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If θ′ > θ then the payoff can be written as

∫ θ

0
G(y)dy + [

∫ θ′

θ
G(y)dy −G(θ′)(θ′ − θ)]

Note that the second term is upper bounded by0. If on the other handθ′ < θ the payoff is given by

∫ θ

0
G(y)dy + [−

∫ θ

θ′
G(y)dy + G(θ′)(θ − θ′)

Again the second term is upper bounded by0. Thus, the payoff is maximized atθ′ = θ which proves the
claim.

16.2.3 Nash equilibrium

We covered this in the first lecture.

16.3 Social Choice Function

Assume that there is some function which is “desirable” given by

f : Θ1 ×Θ2 · · · ×Θn → O

TheMechanism Design Problemis to design the game such that the outcome in the equilibrium is the same
asf . In more detail, note that the mechanism now defines the strategiesΣi. The outcome of the mechanism
is denoted by

g : Σ1 × Σ2 · · · × Σn → O
Also every agenti receives a payment which is denoted by the following function

pi : Σ1 × Σ2 · · ·Σn → R≥0

We say that the mechanism implements the social choice function if the outcome computed in the equilib-
rium isf .

We now outline two ‘standard’ assumptions in this area

1. The agents have quasi-linear preferences, that is,ui(o, θi) = vi(o, θi) + pi.

2. Agents arerisk neutralthat is, every agent’s goal is to maximize the (expected) utility (as opposed to
say just making sure that the utility is above some fixed value).

16.4 Revelation Principle

A Direct Revelation Mechanismis one where the stragey setΣi is to reveal an element ofΘi. A truthful
mechanismis where in the equilibrium, the agents reveal their true type.
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Theorem 16.1 (Revelation Principle).Any mechanism can be transformed into an equivalent truthful
direct revelation mechanism that implements the same social choice function and the same payment.

Proof. Let the given mechanism implement the social choice functionf and let the equilibrium strat-
egy for agenti be si(·). The equivalent truthful direct revelation mechanismf ′ is defined as follows,
f ′(θ1, θ2, · · · , θn) = f(s1(θ1), s2(θ2), · · · , fn(θn)). It is easy to see thatf ′ satisfies all the required prop-
erties.

Let us consider a couple of examples to illustrate the direct revelation principle.

Example 16.1.Consider the ascending auction (also known as theEnglish auction) for a single item. Here
the auctioneer keep on increasing the price till there is just one bidder (or agent) who is left. The last bidder
is declared the winner and pays the current price. It is not too hard to see that the equivalent direct revelation
mechanism is thesecond price auction.

Example 16.2. Consider theDutch auctionwhere the auctioneer starts with a high price and keeps on
decreasing the price till one bidder accepts the price and is declared the winner. He pays the current price.
The equivalent direct revelation mechanism is thefirst price auction.

The Revelation principle allows us to just consider truthful mechanism– this can be useful in some
context like proving impossibility results. There are some issues though–

1. Bidders can be averse to revealing information (consider for example the ISP routing game where
ISPs do not want to reveal their true information).

2. Sometimes it is not easy for the agents to determine their valuation exactly.

3. Agents’ types can be complicated. The classical example is theCombinatorial Auctionswhere there
areN items and the types are subsets of items. Thus,|Θi| is exponential which is prohibitively large.
In real life people do care about these kinds of auction– for example FCC uses one to auction the
spectrum.

16.5 Truthful Mechanisms with Dominant Strategies

In this section, we consider the following questions–

Question.What social functionf can be truthfully implemented (in the dominant strategy sense)?

We first look at the question as to whatf can be implemented without payment. The answer as the
following theorem shows is basically nothing.

Theorem 16.2 (Gibbard-Sattherwaite). If |O| ≥ 3 and f is truthfully implementable thenf is a
dictatorship– that is the outcome just depends on what one single bidder decides to do.

The next obvious question is what can be one with payment and this brings us to the classical Vickery-
Clark-Groves (or VCG) mechanisms.
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16.5.1 Vickery Clark Groves Mechanism

The VCG mechanism implements the following choice function

f(~θ) = argmaxo∈O
∑

i

vi(o, θi)

where the utility of agenti is defined by

ui(o, θi) = vi(o, θi) + pi

After the “optimal solution”o∗ is picked, the payments are fixed as follows

pi(~θ) =
∑

j 6=i

vj(o∗, θj)− hi(θ−i)

Note that the functionhi does not depend on what the type of agenti is. The “standard” function forhi(·)
is the following–hi(θ−i) =

∑
j 6=i vj((o−i)∗, θj) where(o−i)∗ is the optimal solution when agenti is not

present. It is not too hard to verify the following claim.

Claim 2. The VCG mechanism is truthful.
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