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Consider a scenario where a service is provided to a set of users at a certain net cost. A natural question
to ask is, how should one divide the cost amongst the users, i.e., what is a good pricing policy or acost
sharing scheme? Formally, letU be the set of users andC be the cost function that assigns a service cost
C(S) to eachS ⊆ U . It may help to keep the example of an internet service provider (ISP) in mind. In this
case,U is the set of users that desire internet service andC(S) is the monetary cost incurred by the ISP in
providing the service to users inS. We are interested in a scheme that determines how this cost is divided
up and recovered from the users.

Definition 14.1. A cost sharing schemeξ(i, S) assigns a cost to useri ∈ S when the set of usersS is served,
i.e.,ξ : U × 2U → R+.

14.1 Properties of Cost Sharing Schemes

One can talk about several desired properties of a cost sharing scheme such as the following.

Budget-balanced:
∑

i∈S ξ(i, S) = C(S). This says that the cost recovered from the users exactly matches
the cost of providing the service.

Cross-monotonic: For all i ∈ T ⊂ S, ξ(i, T ) ≥ ξ(i, S). This means that it never hurts a given user if more
people join the service.

Core: For all T ⊂ S,
∑

i∈T ξ(i, S) ≤ C(T ). This conditions implies that no subset of users has an
incentive to break away from a bigger set of users that are currently being serviced. Note that any
budget-balanced and cross-monotonic scheme is also cost sharing in the core.

Suppose we restrict ourselves to budget-balanced schemes. Does every cost function have a cross-
monotonic cost sharing scheme? As the following example shows, the answer to this question is no. LetU =
{1, 2, 3}, C(U) = 2, and for everyS ⊂ U,C(S) = 1. Supposeξ is a cross-monotonic cost sharing scheme
for this scenario. By cross-monotonicity,ξ(1, U) ≤ ξ(1, {1, 2}) andξ(2, U) ≤ ξ(2, {1, 2}). Adding these
two inequalities and using the budget-balance condition,ξ(1, U) + ξ(2, U) ≤ ξ(1, {1, 2}) + ξ(2, {1, 2}) =
C({1, 2}) = 1. Similarly, ξ(2, U) + ξ(3, U) as well asξ(3, U) + ξ(1, U) are also each at most 1. Hence,
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∑
i∈U ξ(i, U) = 1

2

∑
i6=j∈U (ξ(i, U) + ξ(j, U)) ≤ 3/2. This is strictly less thanC(U) = 2, violating

budget-balance. Therefore, no such cross-monotonic budget-balancedξ exists.

This motivates a relaxation of the budget-balance condition that recovers only a fraction of the cost of
providing the service.

Budget-balance with factorα < 1: αC(S) ≤
∑

i∈S ξ(i, S) ≤ C(S). This allows the charged cost to be
as low as anα fraction of the cost of service.

Remark.The definition we use above is the one that occurs in literature more frequently. One could alterna-
tively define a cost sharing scheme to be budget-balanced (in the relaxed sense) ifC(S) ≤

∑
i∈S ξ(i, S) ≤

C(S)/α, allowing the service provider to charge a bitmore than the cost of service. With a few simple
relaxations elsewhere, this alternative definition can also be used to obtain the results that we will discuss.

14.2 Covering Games

We will use covering games to explore the connection between the budget-balance factorα and the integral-
ity graph in linear programs formulations of several combinatorial problems. In particular, we will show that
for the edge cover and facility location games, there is no (approximately) budget-balanced cross-monotonic
schemes that can recover more than1

2 and 1
3 of the service cost, respectively.

14.2.1 Set Cover Game

We begin with a relatively simple set cover game. Here we have elements from a universeU and a collection
A of subsets ofU . EachA ∈ A has an associated costcA. The cost of a collection of sets is the sum of the
costs of the sets in it. GivenS ⊆ U , the task is to find a minimum cost sub-collection ofA such that every
element inS is in some set in the sub-collection. We define this problem as a{0, 1} integer programover
variablesxA that indicate whether or not setA is chosen to be in the sub-collection.

C(S) = min
∑
A∈A

cAxA

s.t.∀i ∈ S.
∑
A3i

xA ≥ 1

xA ∈ {0, 1}

We will show that any feasible solution to the dual of the linear program (LP) relaxation of this integer
program is cost sharing in the core. The LP relaxation and its dual are given below. A dual variableyi,S is
used for theith inequality constraint forS in the primal LP.
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Primal

min
∑
A∈A

cAxA

s.t.∀i ∈ S.
∑
A3i

xA ≥ 1

xA ≥ 0

Dual

max
∑
i∈S

yi,S

s.t.∀A ∈ A.
∑
i∈A

yi,S ≤ cA

yi,S ≥ 0

Claim 14.1. {{yS} : yS is a feasible dual solution} = {ξ : ξ is in the core}.

Proof. Suppose first thatξ is in the core. This implies that
∑

i∈A ξ(i, S) ≤ C(A) ≤ cA, which proves that
yi,S = ξ(i, S) is a feasible dual solution. Here the first inequality follows from the fact thatξ is in the core
and the second one is true because all elements ofA can be covered by simply picking the setA at costcA.

For the other direction, assume thatyi,S is a feasible solution to the dual LP. We will show that∑
i∈T yi,S ≤ C(T ), whereC(T ) is the cost of covering all elements ofT which corresponds to

∑k
i=1 cAi .

Notice that
∑

i∈T yi,S is at most
∑k

j=1

∑
i∈Aj

yi,S , which in turn, by the dual constraint, is at most∑k
j=1 cAj = C(T ). This finishes the proof.

It follows from the claim that the integrality gap of this LP is equal to the budget-balance factorα of cost
sharing in the core (not necessarily cross-monotonic). Recall that budget-balance and cross-monotonicity
together imply the core. We conclude that for budget-balance and cross-monotonic cost sharing schemes
for set cover, the budget-balance factor is at most the integrality gap of the above LP. It is natural to ask
whether we can do better, i.e., can we find better bounds on the budget-balance factor when considering
only cross-monotonic cost sharing schemes? This is answered in the affirmative in the next section.

14.2.2 Edge Cover Game

The edge cover game can be thought of as the restriction of the set cover game where every set is of size
2. Given an undirected graphG and a subsetS of its vertices, the edge cover problem is to minimize the
number of edges ofG chosen such that every vertex inS has at least one edge incident on it included in
the chosen edges. For this game, the usersU are the vertices ofG and the cost functionC is defined as
C(S) = min{F⊆E(G), F coversS} |F |.

For every setS, one can obtain a minimum edge cover ofS by taking a maximum matching onS and
adding one edge for every vertex that is not covered by the maximum matching. Using this fact, we can give
a cost sharing scheme in the core with a budget-balance factor of2

3 . We will now argue that if we require
the scheme to be cross-monotonic as well, we cannot do better than a factor of1

2 .

Theorem 14.1.For everyε > 0, there is no(1
2 + ε)-budget-balanced cross-monotonic cost sharing scheme

for the edge cover problem.

The proof of this theorem and the next will be based on the followinggeneral scheme.

1. Choose an instanceG of the game.

2. Define a structureS over the vertices ofG with some symmetry properties.
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Figure 14.1: GraphKn,n for the edge cover game.S corresponding to vertexv chosen at random consists
of the vertices marked with a square.

3. Use probabilistic method -

• ChooseS randomly and show that the expected value of
∑

i∈S ξ(i, S) is at mostαC(S).
• Conclude that there exists anS such that

∑
i∈S ξ(i, S) ≤ αC(S).

Proof of Theorem14.1. Let G = Kn,n be the complete bipartite graph withn vertices in each partition. For
each vertexv in the second partition, define the structureS to containv and itsn neighborsN(v) in the first
partition (see Figure14.1). For a random choice ofv, this gives a random structureS. Note that for any
v, the cost of coveringS is C(S) = n because we need to include all edges withinS to cover all vertices
in N(v). We will show that over the choices ofv, the expected value of recovered cost,

∑
i∈S ξ(i, S), is at

most1 + n
2 , which will give the desired result.

Ev

[∑
i∈S

ξ(i, S)

]
= Ev

[
ξ(v, S)

]
+ Ev

 ∑
i∈N(v)

ξ(i, S)


≤ 1 + Ev

 ∑
i∈N(v)

ξ(i, {i, v})


= 1 + nEi,v

[
ξ(i, {i, v})

]
≤ 1 +

n

2

Here the first inequality follows from the cross-monotonicity ofξ and the subsequent equality from the
symmetry in the structureS. The last inequality is true because by budget balance, the sum of the cost shares
of i andv in order to cover{i, v} is at most one (can choose the single edge(i, v) ∈ E(G)) and averaged
over allv, the expected share of each is at most1

2 .

14.2.3 Metric Facility Location Game

The metric facility location problem is the following. Given a set of cities, a set of facilities with opening
costs, and metric connection costs between cities and facilities, the task is to open a subset of facilities and
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connect each city to an open facility so as to minimize the total cost. In the corresponding game, the cities
form the set of usersU and the costC(S) of a subsetS of cities is the cost of the minimum facility location
solution for that subset.

Theorem 14.2.Any cross-monotonic cost sharing scheme for the facility location game is at most1
3 -budget-

balanced.

Proof. We will work with the following instance of the facility location problem. There arek sets
A1, A2, . . . , Ak of m cities each, wherem = ω(k) and k = ω(1). For every subsetB of cities con-
taining exactly one city from eachAi, there is a facilityfB with connection cost1 to each city inB. The
remaining connection costs are defined by extending the metric, i.e., the cost of connecting cityi 6∈ B to
facility fB is 3. The facility opening costs are all3 (see Figure14.2).

A2

Ai

Ak

A1

c1 c2 c3 cm

f1 fm

c′1 c′k

a2

ak

a1Cities
in Ai

c′2
One city from
eachAj, j 6= i

Figure 14.2: The figure on the left shows the facilities connected well to cities inAi. The one on the right
shows the structure ofS corresponding toi; the filled nodes are included inS and the empty ones are not.

The random setS of cities is picked as follows. Pick a randomi ∈ {1, 2, . . . , k} and for everyj 6= i,
pick a city aj at random fromAj . Let T = {aj : j 6= i} andS = Ai ∪ T (see Figure14.2). Note that
|T | = k − 1 and|Ai| = m.

For any suchS, the optimal cost of servingS is 3 + (k − 1) + 1 + 3(m− 1) = 3m + o(m), which can
be achieved by opening one facilityf with connection cost1 to each city inT and cost1 to a particular city
in Aj , and connecting the remainingm − 1 cities inAj to f at cost3 each. We will show that the average
cost recovered over choices ofS is onlym + o(m), proving the result.

The expected cost recovered is given by

ES

[∑
c∈S

ξ(c, S)

]
= ES

∑
c∈Ai

ξ(c, S)

 + ES

∑
j 6=i

ξ(aj , S)


The second term on the right hand side of this equation is at mostES

[∑
j 6=i ξ(aj , T )

]
by cross-

monotonicity, which is bounded above by3 + (k − 1) = k + 2 by construction of the instance. The
first term is at mostES

[∑
j∈Ai

ξ(j, T ∪ {j})
]
, again by cross-monotonicity. By symmetry, this is equal

to mEj,S

[
ξ(j, T ∪ {j}

]
. The random experiment chooses anAi andk − 1 random cities, one from each
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Aj , j 6= i. This has the same distribution as the alternative random experiment that picksk random cities,
one from eachAj , and then picks all cities from a randomly chosenAi. Thinking of this alternative random
experiment, the said expected value ofξ(j, T ∪ {j}) is 1

k (k + 3). This is because one can open a single
facility connected at cost1 to each of thek cities inT ∪ {j}, and divide the cost equally among the cities.
It follows that the whole term has an expected value ofm

k (k + 3) = m + o(m).
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