Lecture 14
Cost Sharing Schemes

May 18, 2005
Lecturer: Nicole Immorlica
Notes: Ashish Sabharwal

Consider a scenario where a service is provided to a set of users at a certain net cost. A natural question
to ask is, how should one divide the cost amongst the users, i.e., what is a good pricing policygsor a
sharing schenfe Formally, letU be the set of users arfd be the cost function that assigns a service cost
C(5) toeachS C U. It may help to keep the example of an internet service provider (ISP) in mind. In this
caseU is the set of users that desire internet service@g$l) is the monetary cost incurred by the ISP in
providing the service to users # We are interested in a scheme that determines how this cost is divided
up and recovered from the users.

Definition 14.1. A cost sharing schemgi, S) assigns a cost to usee S when the set of usersis served,
ie.,&:U x 2V — R,

14.1 Properties of Cost Sharing Schemes
One can talk about several desired properties of a cost sharing scheme such as the following.

Budget-balanced: ), ¢ £(4,.5) = C(S). This says that the cost recovered from the users exactly matches
the cost of providing the service.

Cross-monotonic: Forall: € T C S, £(:,T) > £(4,.5). This means that it never hurts a given user if more
people join the service.

Core: ForallT C S, > ,.r&(i,8) < C(T). This conditions implies that no subset of users has an
incentive to break away from a bigger set of users that are currently being serviced. Note that any
budget-balanced and cross-monotonic scheme is also cost sharing in the core.

Suppose we restrict ourselves to budget-balanced schemes. Does every cost function have a cross-
monotonic cost sharing scheme? As the following example shows, the answer to this question i$ne. Let
{1,2,3}, C(U) = 2, and for everyS C U,C(S) = 1. Suppos€ is a cross-monotonic cost sharing scheme
for this scenario. By cross-monotonicity,1, U) < £(1,{1,2}) and{(2,U) < £(2,{1,2}). Adding these
two inequalities and using the budget-balance condiioh,U) + £(2,U) < £(1,{1,2}) +£(2,{1,2}) =
C({1,2}) = 1. Similarly, £(2,U) + £(3,U) as well a<£(3,U) + £(1,U) are also each at most 1. Hence,



Yicv i, U) = %Z#jGU(g(z’,U) +&(5,U)) < 3/2. This is strictly less thar”'(U) = 2, violating
budget-balance. Therefore, no such cross-monotonic budget-bataexits.

This motivates a relaxation of the budget-balance condition that recovers only a fraction of the cost of
providing the service.

Budget-balance with factora < 1. aC(S) < > .. 4£(i,5) < C(S). This allows the charged cost to be
as low as am fraction of the cost of service.

Remark.The definition we use above is the one that occurs in literature more frequently. One could alterna-
tively define a cost sharing scheme to be budget-balanced (in the relaxed s€nse) # > . o £(4,5) <
C(9)/«, allowing the service provider to charge a bibrethan the cost of service. With a few simple
relaxations elsewhere, this alternative definition can also be used to obtain the results that we will discuss.

14.2 Covering Games

We will use covering games to explore the connection between the budget-balance: fautothe integral-

ity graph in linear programs formulations of several combinatorial problems. In particular, we will show that
for the edge cover and facility location games, there is no (approximately) budget-balanced cross-monotonic
schemes that can recover more t%aand% of the service cost, respectively.

14.2.1 Set Cover Game

We begin with a relatively simple set cover game. Here we have elements from a ubivansiea collection

A of subsets of/. EachA ¢ A has an associated cas{. The cost of a collection of sets is the sum of the
costs of the sets in it. Givesi C U, the task is to find a minimum cost sub-collection4tuch that every
element inS is in some set in the sub-collection. We define this problem &5 &} integer programover
variablesr 4 that indicate whether or not sdtis chosen to be in the sub-collection.

C(S) = min Z CATA

s.t.Vie S.ZxA > 1
A>iq

xy € {0,1}

We will show that any feasible solution to the dual of the linear program (LP) relaxation of this integer
program is cost sharing in the core. The LP relaxation and its dual are given below. A dual variaise
used for tha?” inequality constraint foss in the primal LP.



AeA €S
S.t.ViES.ZxAzl S.t.VAEA.ZyLSSCA
A>i €A
a4 >0 Yi,s >0

Claim 14.1. {{ys} : ys is a feasible dual solutign= {¢ : { is in the coré.

Proof. Suppose first thag is in the core. This implies that,_ , £(i, S) < C(A) < ca, which proves that
vi.s = £(4,5) is a feasible dual solution. Here the first inequality follows from the factghsin the core
and the second one is true because all elementsaain be covered by simply picking the sé&t costc 4.
For the other direction, assume thats is a feasible solution to the dual LP. We will show that
S ier vis < C(T), whereC(T) is the cost of covering all elements Bfwhich corresponds 5.7, c4,.
Notice that) ;s is at mostz";:1 > _ica, Yi,s» Which in turn, by the dual constraint, is at most

k_ca. = C(T). This finishes the proof. O
Z]—l J p

It follows from the claim that the integrality gap of this LP is equal to the budget-balance aofaost
sharing in the core (not necessarily cross-monotonic). Recall that budget-balance and cross-monotonicity
together imply the core. We conclude that for budget-balance and cross-monotonic cost sharing schemes
for set cover, the budget-balance factor is at most the integrality gap of the above LP. It is natural to ask
whether we can do better, i.e., can we find better bounds on the budget-balance factor when considering
only cross-monotonic cost sharing schemes? This is answered in the affirmative in the next section.

14.2.2 Edge Cover Game

The edge cover game can be thought of as the restriction of the set cover game where every set is of size
2. Given an undirected graph and a subse$ of its vertices, the edge cover problem is to minimize the
number of edges off chosen such that every vertex $hhas at least one edge incident on it included in

the chosen edges. For this game, the ueege the vertices ofs and the cost functiod' is defined as

C(S) = mingpcg(a), F coverssy | F|-
For every sefS, one can obtain a minimum edge cover$by taking a maximum matching ofi and
adding one edge for every vertex that is not covered by the maximum matching. Using this fact, we can give

a cost sharing scheme in the core with a budget-balance fac%ar\Me will now argue that if we require
the scheme to be cross-monotonic as well, we cannot do better than a faktor of

Theorem 14.1. For everye > 0, there is no(% + €)-budget-balanced cross-monotonic cost sharing scheme
for the edge cover problem.

The proof of this theorem and the next will be based on the followigeral scheme

1. Choose an instand® of the game.

2. Define a structuré over the vertices off with some symmetry properties.
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Graphk, ,

N(v)

Figure 14.1: Graplik, ,, for the edge cover game corresponding to vertex chosen at random consists
of the vertices marked with a square.

3. Use probabilistic method -

e ChooseS randomly and show that the expected valug of ¢ £(7, .S) is at mosinC/(.S).
¢ Conclude that there exists @hsuch tha) . £(i, ) < aC(S).

Proof of Theoreni4.1 LetG = K, ,, be the complete bipartite graph withvertices in each partition. For
each vertex in the second partition, define the struct$réo containu and itsn neighborsV (v) in the first
partition (see Figurd4.1). For a random choice af, this gives a random structute Note that for any
v, the cost of covering is C'(S) = n because we need to include all edges withiito cover all vertices
in N (v). We will show that over the choices of the expected value of recovered cgs},. 4 (i, 5), is at
mostl + 3, which will give the desired result.

E, Y £(0,9)| = Eféw,8)]+E, | > £G5)
i€S i€N(v)
< 1+E, | > €6 {i0})
1EN (v)
= 1+nEz,v[£(Z’{l’U})]
< 1+

Here the first inequality follows from the cross-monotonicityaind the subsequent equality from the
symmetry in the structur€. The last inequality is true because by budget balance, the sum of the cost shares
of ¢ andv in order to coveri, v} is at most one (can choose the single etige) € E(G)) and averaged
over allv, the expected share of each is at m%nst O

14.2.3 Metric Facility Location Game

The metric facility location problem is the following. Given a set of cities, a set of facilities with opening
costs, and metric connection costs between cities and facilities, the task is to open a subset of facilities and

4



connect each city to an open facility so as to minimize the total cost. In the corresponding game, the cities
form the set of user§ and the cos€’(.S) of a subseft of cities is the cost of the minimum facility location
solution for that subset.

Theorem 14.2.Any cross-monotonic cost sharing scheme for the facility location game is a%nh)ustget—
balanced.

Proof. We will work with the following instance of the facility location problem. There d@resets
A1, Ay, ..., A of m cities each, wheren = w(k) andk = w(1). For every subseB of cities con-
taining exactly one city from each;, there is a facilityfg with connection cost to each city inB. The
remaining connection costs are defined by extending the metric, i.e., the cost of connecting dityto
facility fz is 3. The facility opening costs are all(see Figurel4.2).
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Figure 14.2: The figure on the left shows the facilities connected well to citids.iffhe one on the right
shows the structure & corresponding t@; the filled nodes are included $and the empty ones are not.

The random se$ of cities is picked as follows. Pick a randane {1,2,...,k} and for everyj # i,
pick a city a; at random fromA4;. LetT = {a;:j #i} andS = A; UT (see Figurel4.2). Note that
|T| =k —1and|4;| = m.

For any suctb, the optimal cost of serving is 3 + (k — 1) + 1+ 3(m — 1) = 3m + o(m), which can
be achieved by opening one facilifywith connection cost to each city inI" and costl to a particular city
in A;, and connecting the remaining — 1 cities in A; to f at cost3 each. We will show that the average
cost recovered over choices $fis only m + o(m), proving the result.

The expected cost recovered is given by

> €(e,9)

ceS

Eg =Eg Zf(cws’) + Eg Zg(aj,s)

cEA; J#i

The second term on the right hand side of this equation is at fﬁg@tzjﬁf(aj,T)] by cross-
monotonicity, which is bounded above By+ (k — 1) = k + 2 by construction of the instance. The
first term is at mosES[ZjeAi (5, T U {j})], again by cross-monotonicity. By symmetry, this is equal
to mE; g [g(j,T U {j}]. The random experiment choosesAanandk — 1 random cities, one from each
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Aj,j # 1. This has the same distribution as the alternative random experiment thakpiakdom cities,
one from each;, and then picks all cities from a randomly chosén Thinking of this alternative random
experiment, the said expected value{of, T U {j}) is %(k + 3). This is because one can open a single
facility connected at cost to each of the: cities inT' U {;j}, and divide the cost equally among the cities.
It follows that the whole term has an expected valug'¢k + 3) = m + o(m). O
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