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1.1

Recall our definitions from the last lecture. Given a graphG and source-destination pairs(si, ti), the volume
of traffic from si to ti is given byri. The latency on each edge is denoted byle and it’s assumed to be
continuous and non-decreasing.

The flow on a pathp from si to ti is given byf i
p for all paths fromsi to ti, Pi. The congestion on edge

e is
ge =

∑
p∈

⋃
Pi,e∈p

f i
p

The delay of a pathp is lp =
∑

e∈p le(fe).

We are at (Wardrop) equilibrium or Nash flow iff

∀i∀p′∀p ∈ Pi s.t. fp > 0, lp′ ≥ lp

Price of Anarchy=
social cost of worst equilibrium

optimal social cost

In order to minimize the price of anarchy, we try to put “taxes” on edges. Letfp flow such that∑
p∈Pi

fp = ri.

Question: Given a congestion goal−→g , can we find tollsτe such that the congestion induced by a Nash
flow is−→g ? Then−→g is enforced by−→τ .

Let’s consider the case where each agent for traffic fromsi to ti wishes to minimizeαi(time spent) +
(tolls paid). We introduce the following LP with the associated dual variables.
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min
∑

i

αi

∑
p∈Pi

lp(g)f i
p

dual : te ∀e ∈ E,
∑

i

∑
p∈Pi|e∈p

f i
p ≤ ge

dual : zi ∀i,
∑
p∈Pi

f i
p = ri

f i
p ≥ 0

The corresponding Dual program is

max
∑

i

rizi −
∑

e

gete

∀i∀p ∈ Pi zi −
∑
e∈p

te ≤ αilp(g)

∀e te ≥ 0

Definition 1.1. A congestion isminimal if the primal LP has an optimal solution in which all inequalities
are tight.

Theorem 1.1. A congestiong is enforceable by tolls iffg is minimal.

Proof. To prove the first direction, assume thatg is minimal, therefore exists an optimalf where all the
constraints are tight. Let(

−→
t ,−→z ) be the optimal dual solution.

Fix i and by complementary slackness we get

• if f i
p > 0 ⇒ zi =

∑
e∈p te + αilp(g)

• if f i
p = 0 ⇒ zi ≤

∑
e∈p te + αilp(g)

We see that when the tolls are set atte, the Nash flow on every positive path has the same cheapest value.

To prove the other direction, assume thatg is enforcable by tolls. This means that there exists flowf
and tollsT such thatf is a Nash flow and the congestion induced isg.

Let zi =
∑

e∈P Te + αilp(g) be the value for any path withf i
p > 0. But this means that there exists a

feasible dual solution that satisfies the complementary slackness conditions, therefore all primal constraints
are tight andg is minimal.

1.2 Coalition games

In a coalition game ofN players, we consider the value assigned to subsets of players

v : 2N → R ≥ 0

or v(S) the value of subsetS working together. Typical assumptions arev(∅) = 0, S ⊆ T ⇒ v(S) ≤ v(T ).
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Definition 1.2. Solution concept: “core”

(x1, . . . , xn) is in the core if
∑

1≤i≤n

xi = v(N)

and∀S,
∑
i∈S

xi ≥ v(S)

The core property guarantees that no subset will want to work on their own.

1.2.1 Shapley axioms

Definition 1.3. Themarginal valuefor i with respect toS is

∆i(S) = v(S ∪ {i})− v(S)

The Shapley axioms are

1. Dummy axiom: If ∆i(S) = αi,∀S s.t. i /∈ S thenxi = αi.

2. Symmetry: If ∆i(S) = ∆j(S),∀S s.t. i, j /∈ S thenxi = xj .

3. Linearity: If v(S) = v1(S) + v2(S), thenxi(v) = xi(v1) + xi(v2).

The way to obtain the Shapley value is to order the elements ofN according to a permutationΠ. Then

xΠ
i = v(S ∪ {i})− v(S)

S.V. = EΠ(xΠ
i

It all comes down to this interesting theorem

Theorem 1.2. The Shapley Value is the only way to satisfy the Shapley axioms.

1.3 Cost Sharing

We would like to share the cost of a jointly utilized facility in a fair manner. We start by definingc(S),
the cost to serve subsetS which is the same as before forv(S) = −c(S). We still have the same solution
concepts.

An example is multicast where a root serves nodes in a tree network. In this example, the Shapley value
splits equally the cost of an edge on all users downstream of that edge.

The problem we’re interested is an extension in which the players have utility valuesui, the utility to
useri to receive service.

The desired mechanism properties are

1. Efficiency: The set of users that receive service isS = argmaxT [
∑

i∈T ui − c(T )].
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2. Budget-balance:
∑

i∈S xi = c(S)

3. Truthful:

The standard restrictions are

1. Non-Positive Transfers:xi ≥ 0

2. Voluntary Participation: xi = 0 if i /∈ S

3. Consumer Sovereignty: ∀i∃ui, i ∈ S

Fact 1.1. It’s not possible to get budget-balance and efficiency at the same time.

Let’s focus on truthful budget-balanced mechanisms. Letξ(i, S) be the payment by playeri ∈ S if S is
the set receiving service. ∑

i∈S

ξ(i, S) = c(S)

Players knowingξ say yes/no and those that say yes (setS) receive service and payξ(i, S). The mech-
anism should look like this

u1, . . . , un → qi(ui) → � → S = {i|qi is yes}, ξ(i, S)

Revelation principle: If there is a unique dominant strategy equilibrium then there exists a truthful
mechanism. Just have players revealui’s and computeqi’s in the mechanism.

We say thatξ is cross-monotonic if∀S ⊆ T i ∈ S ξ(i, T ) ≤ ξ(i, S).

Truthful mechanism: Ask for utilities and offer paymentsξ(i, N). Some are happy and say yes while
others say no. Then letS be those that are happy. Offer themξ(i, S) and keep doing that.

Finally, we should mention the case of submodular cost functions

∀A ⊆ B c(A ∪ {i})− c(A) ≥ c(B ∪ {i})− c(B)

In this case, the Shapley value is a cross-monotonic cost sharing mechanism.
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