
Lecture 10

Convex Optimization and Lagrangian Duality

April 29, 2005
Lecturer: Anna R. Karlin

Notes: Atri Rudra

In this lecture we will cover some basic stuff on Optimization. A very good book for this subject is
Convex Optimizationby Boyd and Vandenberghe. First part of this lecture would follow this book.

10.1 The Lagrangian

Consider the following general optimization problem

minimize f0(~x) (10.1)

such that fi(~x) = 0 i = 1..m (10.2)

hj(~x) = 0 j = 1..p (10.3)

~x ∈ Rn (10.4)

Letp∗ denote the (value) of the optimal solution to the above program. Further we sayx is afeasiblesolution
if it satisfies (10.2),(10.3) and (10.4). We now define theLagrangian.

L(~x,~λ, ~ν) = f0(~x) +
m∑

i=1

λifi(~x) +
p∑

j=1

νjhj(~x)

Finally theLagranage dual functionis given by

g(~λ, ~ν) = inf~x L(~x,~λ, ~ν)

We now make a couple of simple observations.

Observation.WhenL(·, ~λ, ~ν) is unbounded from below then the dual takes the value−∞.

Observation.g(~λ, ~ν) is concave1 as it is the infimum of a set of affine2 functions.

If x is feasible solution of program (10.2)- (10.4), then we have the following

L(x,~λ, ~ν) = f0(x) +
∑m

i=1 λifi(x) +
∑p

j=1 νjhj(x)

≤ f0(x) for ~λ ≥ 0
1A functiong(x) is concave is for any0 ≤ α ≤ 1, αg(x) + (1− α)g(y) ≤ g(αx + (1− α)y).
2That is, linear in{λi} and{νj}.
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Thus for~λ ≥ 0, we have that

g(~λ, ~ν) = min~x L(~x,~λ, ~ν) ≤ f0( ~x∗) = p∗

We now define theLagrange Dual Program

maximize g(~λ, ~ν)
such that ~λ ≥ 0

Let d∗ be the value of the optimal solution for the above program. We had just argued thatd∗ ≤ p∗. This is
the weak duality.

For almost all convex optimization problem, strong duality holds, that is,d∗ = p∗.

10.1.1 Constraint Qualification

We now define Slater’s condition which implies that the strong duality holds.

Definition 10.1 (Slater’s Condition). ∃~x such that~x is in the interior of the feasible region, that is,

∃~x such that∀i = 1..m; fi(~x) < 0 and∀j = 1..p; hj(~x) = 0

10.1.2 LP Duality

Let us consider the familiar example of LP duality. For that consider a typical LP:

minimize ~cT~x

such that ~b−A~x ≤ 0
−~x ≤ 0

The Lagrangian of the above LP is given by

L(~x,~λ) = ~cT~x + ~λ1
T
(~b−A~x)− ~λ2

T

= ~λ1
T~b + (~cT − ~λ1

T
A− ~λ2

T
)~x

where in the above,~λ = 〈 ~λ1, ~λ2〉 and note that we do not need~ν. The corresponding dual is as follows

g(~λ) = ~λ1
T~b + inf~x(~cT − ~λ1

T
A− ~λ2

T
)~x

which is ~λ1
T~b if (~cT − ~λ1

T
A− ~λ2

T
) = 0 and−∞ otherwise.

Thus, the lagrange dual program is the following

maximize ~λ1
T~b

(~cT − ~λ1
T
A− ~λ2

T
) = 0

~λ1, ~λ2 ≥ 0

Now rewriting the first condition we have~λ1
T
A + ~λ2

T
= ~cT , which along with the condition that~λ2 ≥ 0

implies that~λ1
T
A ≤ ~cT which gives us the familiar formAT ~λ1 ≤ ~c.

2



10.1.3 More on Duality

By definition, the optimal value of the dual is give by

d∗ = sup~λ≥0
inf~xL(~x,~λ)

In what is to follow we will drop the dependence on~ν for simplicity (all the results presented also hold when
~ν is present). We have the following claim.

Claim 1.
p∗ = inf~x sup~λ≥0

L(~c, ~λ)

Proof. By definition, we have

L(~x,~λ) = f0(~x) +
m∑

i=1

λifi(~x)

Thus, we have

sup~λ≥0
L(~x,~λ) =

{
f0(~x) if fi(~x) ≤ 0 ∀i
∞ otherwise

By definitionp∗ = inf~xf0(~x) and the claim follows.

Weak Dualitystates that
sup~λ≥0

inf~xL(~x,~λ) ≤ inf~xsup~λ≥0
L(~c, ~λ)

For another interpretation consider a continuous zero-sum game where the first player chooses~x, the second
player chooses~λ ≥ 0 and first player pays the second playerL(~x,~λ). Weak duality says that it is better to
go second. The famous min-max theorem is a special case of this where the strong duality holds.

10.1.4 Economic interpretation

Let ~x describe how the enterprise works (for example~x might be the bandwidth allocation),f0(~x) denote
the cost to the enterprise while eachfi(~x) denotes constraints or limits on resources.

What the dual of the lagrangian says is that constraints can be violated if the enterprise is prepared to
pay some cost. Let~λ denote the per unit cost (or “price”) of each resource. Now consider the termλifi(~x)
which can be considered to be the extra payment that the firm has to make. Iffi(~x) > 0 then the firm has to
pay more for the violation. On the other hand iffi(~x) < 0 then the firm can rent out the resource (or recover
the cost). Thus, the total cost to the firm isf0(~x) +

∑
λifi(~x). In other words,g(~λ) is the minimum cost

to the firm at price~λ. d∗ can be interpreted as the cost to the firm under the least favorable setting of set of
prices.~λ∗ are called theshadow prices, that is, they are the “correct” prices for the resources so that there is
no incentive to deviate).
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10.1.5 Complimentary Slackness Conditions

Let ~x∗, ~λ∗ be the optimal solution to the primal program of (10.2)-(10.4) and say strong duality holds, that
is, p∗ = d∗. This implies that

f0(~x∗) = g(~λ∗)

= inf~x(f0(~x) +
m∑

i=1

λ∗i fi(~x))

≤ f0(~x∗) +
m∑

i=1

λ∗i fi(~x∗)

= f0(~x∗)

As the left hand and right hand side of the inequality are the same, we have
∑m

i=1 λ∗i fi(~x∗) = 0. Further, as
~x∗, ~λ∗ is a feasible solution of the lagrangian, we have for alli; λ∗i ≥ 0 andfi(~x∗) ≤ 0. This implies that
for anyi, λ∗i fi(~x∗) = 0. Thus, we have

λ∗i > 0 ⇒ fi(~x∗) = 0
fi(~x∗) < 0 ⇒ λ∗i = 0

Note that the above holds for any primal and dual solution where there is no gap.

KKT Conditions

Assume that thefi’s are differentiable and let~x∗, ~λ∗ be the optimal primal solution with no gap, that is,
d∗ = p∗. Since~x∗ minimizesf0(~x) +

∑
i λ
∗
i fi(~x) the gradient at~x∗ is zero. In other words,Of0(~x∗) +∑

i λ
∗
i Ofi(~x∗) = 0.

Thus, the KKT conditions are–

Of0(~x∗) +
∑

i

λ∗i Ofi(~x∗) = 0

fi(~x∗) ≤ 0 ∀i
λ∗i ≥ 0 ∀i

λ∗i fi(~x∗) = 0 ∀i

The above conditions are necessary but not sufficient for general optimization programs but are sufficient
for convex programs.

10.2 Applications of the Lagrangian

10.2.1 Kelly’s Procedure

Recall Kelly’s procedure which was introduced in the last lecture. Every agenti has a strictly monotone
increasing and strictly convex utility functionui(·). At each iteration, agenti asks forwi amounts of
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bandwidth (from a maximum possible ofB) and the link sends back a price of
∑

j wj

B . For the next round,
the agenti sends in a new demandw′i = maxx[ui(x

p )− x].

We will prove the following theorem.

Theorem 10.1.The resulting NE from Kelly’s procedure maximizes the social welfare, given by the follow-
ing convex optimization program

maximize
∑

i ui(xi)
subject to

∑
i xi ≤ B

xi ≥ 0 ∀i

Proof. We will use lagrangian duality to prove the theorem– the basic idea being that the optimal condition
of the dual of the convex program is same as the solution at which Kelly’s procedure stabilizes. First we
re-write the convex program in the more ‘familiar’ form and use lagrangian multipliers.

minimize −∑
i ui(xi)

subject to
∑

i xi −B ≤ 0 (×λ)
−xi ≤ 0 (×λi)

The Lagrangian is as follows

L(~x, λ, {λi}) = −
∑

i

ui(xi) + λ(
∑

i

xi −B)−
∑

i

λixi

Thus, the optimal solution is given by

d∗ = supλ≥0,λi≥0inf~xL(~x, λ, {λi})
Now note that Slater’s conditions holds (takexi = ε and letε → 0 and note that~ε is a point in the interior)
and thus, strong duality holds. Now applying the KKT conditions we have

• λ∗(
∑

i x
∗
i −B) = 0. We then the have the following

λ∗ > 0 ⇒
∑

i

x∗i = B

• −λ∗i x
∗
i = 0 which implies the following–

x∗i > 0 ⇒ λ∗i = 0

• −u′i(x
∗
i ) + λ∗ − λ∗i = 0 for all i which implies

u′i(x
∗
i ) = λ∗ if x∗i > 0

Thus, if we associatep∗ = λ∗ andx∗i = w∗i
p∗ we are done. Recall that in the stabilizing point in Kelly’s

procedure, for alli, u′i(
w∗i
p∗ ) = p∗ and all the bandwidth is allocated.

From the proof above one can think of the Kelly’s procedure as a way to solve the dual of the lagrangian
using some sort of gradient descent.
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10.2.2 The Johari-Tsitsiklis Algorithm

Recall from the last lecture that the Johari-Tsitsiklis algorithm chosew′i = maxwiui( wiB
wi+

∑
j 6=i wj

− wi).

In this section, we will sketch the analysis which shows that the point where the Johari-Tsitsiklis algo-
rithm stabilizes is at least34 as good as the social optimal.

First note that at the equilibrium the following holds–

u′i(
Bwi

wi +
∑

j 6=i wj
)(

B

wi +
∑

j 6=i wj
− Bwi

(wi +
∑

j 6=i wj)2
) = 1

If we setxi = wi
p = wiB∑

j wj
the above equation becomes

u′i(xi) =
p

1− xi
B

For the analysis we will need two more functions which are based on the utility functionsui(·)’s. The
first functionzi(·) is the the tangent line atxi for ui(xi), that iszi(xi) = ui(xi) and the slope of the line
zi(·) is u′i(xi). Further,Gi(·) is defined as the line parallel tozi(·) such that it passes through the origin, that
is, Gi(x) = zi(x) − ci whereci = zi(0). Note that asui(·) was monotone increasing and strictly convex,
ci > 0.

Let ~x denote the Nash Equilibrium of the procedure and~x∗ are the values of the social optimum. We are
thus interested in the quantity ∑

ui(xi)∑
ui(x∗i )

=
Nash(ui’s)
OPT(ui’s)

Now consider the case when the utility functions were the functionszi(·). ~x still remains the NE and since
zi(·) is always strictly larger thanui(·) (asui(·) is strictly convex), we have

Nash(ui’s)
OPT(ui’s)

≥ Nash(zi’s)
OPT(zi’s)

As discussed in the previous paragraph, for any pointx, Gi(x) = Zi(x) − ci whereci > 0, which gives
us Nash(Gi’s) − Nash(zi’s) = OPT(Gi’s) − OPT(zi’s) =

∑
i ci > 0. Finally the fact that OPT(zi’s) ≥

OPT(Gi’s) implies that
Nash(zi’s)
OPT(zi’s)

≥ Nash(Gi’s)
OPT(Gi’s)

By the definition ofGi(·) we have

Gi(gi) =
p

1− xi
B

gi

Assume w.l.o.g assume thatu′1(x1) = p
1−x1

B

≥ u′i(xi) for anyi ≥ 2. It is not to hard to see that the~x is still

the NE for the utilitiesGi(·). Finally, asGi(·) is a linear function, the optimal allocates all ofB to agent1
(as it has the largest slope). All this implies that

Nash(Gi’s)
OPT(Gi’s)

=
( p
1−x1

B

)x1 + [
∑

j≥2
p

1−xj
B

xj ]

( p
1−x1

B

)B
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One can show that the largest the latter ratio can be is3
4 .

The crucial thing in the above analysis was to reduce the problem to the linear case. One can show that
this ratio of 3

4 is tight by the following example. Letu1(x) = x andui(x) = x
2 wherei = 2..n + 1 with

B = 1. The optimal solution is to assign everything to agent1 while in the Nash Equilibrium,12 is allocated
to agent1 and 1

2n bandwidth to the othern agent which gives a ratio of34 .
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