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8.1 Overview

So far we have been studying games that are motivated in Computer Science in areas like Ecommerce
or Networks. We’ve seen 3 different types of equilbria, Dominant, Nash and Combined. We have seen
existence and talked a little bit about their complexity. Another direction, and our topic in this lecture, is the
quality of these solutions.

It seems that we are giving up some amount of efficiency for the sake of stability. By efficiency, we
mean an abstract performance measure that could be instaniated with quantities like throughput or latency.
One measure of this loss of efficiency is called thecost of anarchy, which was coined by Papadimitriou.
In this definition, we compare the performance of the worst Nash equilibream with the performance of the
optimal centralized solution. Another measure is called theprice of stability, were we measure the ratio of
the best Nash equilbream to the optimal centralized solution.

Remark.The existence of simple (reasonable) learning strategies that never converge to a Nash equilbream,
makes these definitions a little bit unsatisfying.

We will begin by examining a resource allocation problem and generalize it to a network setting. As we
go we will generalize the behavior of the participants so that we (hopefully) get closer to how real actors
will behave.

8.2 The Setting

Here we consider the setting for the different games.

8.2.1 Resource Allocation

In this general situation there are consumers and producers who produce some single product. Theith

consumer is characterized by a valuedi, that represents the demand that consumer i has for the product.
Additionally the consumer has a functionUi : R+ −→ R+ which is the utility to theith consumer of
receivingx units of product.
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Theith producer has some cost to produce a unit of productCi : R+ −→ R+.

8.2.2 Single Link in a Network

There aren users interested in sharing a link with bandwidthB. Here the cost function is

c(s)

{
0 s ≤ B

∞ s > B

Our goal is efficient allocation, that is choosing a vectora such thatmax
∑n

i Ui(ai). This is subject to
the constraints that

∑
ai ≤ B andai ≥ 0. We will later refer to this program asLP.

8.3 Mechanisms

Here we consider first a centralized auction solution, the VCG (Vickrey-Clarke-Groves) method. We will see
that this mechansim istruthful, that is participants do not have incentive to lie and that is social optimal. We
will then look at distributed mechanisms, such as Kelly’s mechanism and the Johari-Tsitsiklis’ mechanism.
These two mechanisms achieve varying bounds on the cost of anarchy under differing models of how players
will play.

8.3.1 Run an auction

Run VCG mechanism, choosed∗ optimally. First each user submitsUi - the entire function. Let̃aij be the
jth component of the solution withouti playing. Then we setUi’s payment

pi = Ui(a∗i )− (
∑

i

Ui(a∗i )−
∑
j 6=i

Ui(ãij))

The key property of this game is that it is truthful, that is it is a dominant strategy to be truthful. To see

this, let’s first look at an example. Let the utility functionsUi(ai) =

{
vi ai = 1
0 otherwise

. Without loss, we

can reorder the players so thatv1 ≥ v2 · · · ≥ vn. Our allocation is1 to theB highest bidders. Notice theith
consumer pays

pi = vi − (
∑

i

Ui(a∗i )−
∑
j 6=i

Ui(ãij)) = vi − (vi − vB+1) = vB+1

Let us see why this mechanism is truthful in this example. Suppose it would have been better for the
conusmer to betv′i < vi. There is a scenario wherevi would have been one of the highest bidders but not
v′i, so the player would get 0 utility. However in every situation where we betvi and still get the item with
v′i we pay the same amount. As a result, it is never better to bid less than the truthful amount.

Supposev′i > vi, you should have bid more. If you get the item with both bids, then your price is
independent of your bid, so you could not have done strictly better. So it can only be in the case that you get
the item atv′i but not atvi. This means you pay some price p. Noticep ≥ vi, since p =vB+1 and you did
not get the item withvi meaningvi was not strictly greater than this price. This means your utility is≤ 0.
So you are no better off with a higher bid.
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Figure 8.1: Market clearing Price

Claim 8.1. The mechanism is truthful

Proof. Suppose i should have submittedU ′
i that leads to a new allocationyi. Let the original allocation be

calleda and the allocation without player i be calledz, ãij above.

What is the price wheni lied aboutUi?

p′i =
∑
j 6=i

Uj(zj)−
∑
j 6=i

Uj(yj)

What is the price wheni is truthful?

pi =
∑
j 6=i

Uj(zj)−
∑
j 6=i

Uj(xi)

Now suppose that this was better for playeri. That is the real utility function of the new allocation minus
the new price is better:Ui(xi)− pi < Ui(yi)− p′i.

Notice that the term depending only onz is the same so we can write:

Ui(xi) +
∑
j 6=i

Uj(xj) < Ui(yi) +
∑
j 6=i

Uj(yj) ⇔
∑

j

Uj(xj) <
∑

j

Uj(yj)

This is a contradiction to the way the algorithm works, thexj are supposed to attain a maximium value
in their sum.

One problem with this algorithm is that it requires us to send our whole utility function to the centralized
party. This setup may be undesriable, if the parties do not wish to share their entire function. This may also
be infeasible, for example if the function is not known.
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Figure 8.2: Kelly’s Mechanism

8.3.2 Resource Allocation as a Market

We can view resource allocation as a market. Here let theui be continuous, increasing, differentiable,
strictly convex - about as nice as can be. We are considering the situation when the prices are fixed for all
participants.

This discussion relates to the fundemental theorem of welfare economics.

Definition 8.1. A Market Clearingmeans that all of the resource (bandwidth) are allocated.

Let xi(p) be the value ofxi that maximizesUi(xi) − xi ∗ p. This is roughly how much the player is
willing to buy at price p. Letp∗ be defined as the largest price such that the market clears. This is graphically
represented in figure 7.1. Letx∗ = xi(p∗).

Theorem 8.1. x∗ optimizesLP

Proof. It is clear that the conditions ofLP hold atx∗. Let y be an optimal feasible solution. Now we notice
term by term,

∑
i(Ui(yi) − yip

∗) ≤
∑

i(Ui(xi) − xip
∗) because our mechanism maximizes this quantity.

Since the market clears
∑

i xip
∗ = Bp∗. This means we can write,

∑
i Ui(yi)−Bp∗ ≤

∑
i Ui(xi)−Bp∗,

so
∑

i Ui(yi) ≤
∑

i Ui(xi). Sincey maximizes
∑

i Ui(yi), we conclude that
∑

i Ui(yi) =
∑

i Ui(xi).

8.3.3 Kelly’s Mechanism

We now consider Kelly’s mechanism depicted for our single link case in figure 7.2. Here, the bidderi offers
a bid ofwi to the link. Each bidder is sent backp =

P
wj

B . The playeri gets wiP
j wj

B. Each bidder computes

max vi(wi
p − wi) at their next level.

Theorem 8.2. Outcome of this mechanism is the same outcome.

Proof. Next time by LaGrangian Duality of Convex Programs.

Remark.Notice there is nothing on how quickly it converges to this solution.

8.3.4 Johari-Tsitsiklis

A strangeness in Kelly’s process is that someone who wants more units does not take into consideration the
effect of their bid on the price. Johari-Tsitsiklis considers when the user is anticipating the increase in cost
of their own bid. Here they computewi to maximizeUi( wiB

Bp−wold+wi
)− wi
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Theorem 8.3. ∑
i

Ui(xi) ≥
3
4

max
xi

∑
i

Ui(xi)
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