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More on learning from expert advice

Feb 11, 2005
Lecturer: Anna Karlin
Notes: Ioannis Giotis

1.1 Online experts continued

Consider a sequence of time stepst = 1 . . . T , where in each step we choose amongm strategies. During
each round, our online learner chooses a distributionpt. Afterwards the environment-adversary chooses a
profitPt

i andlossLt
i for each strategyi yielding the profit and loss vectorsPt andLt. We consider all profit

and loss values normalized in the range[0, 1].

The agent earns(pt,Pt − Lt). We also define theincomeon each round asIt
i = Pt

i − Lt
i. Ii =

sumT
t=1It

i .

Theorem 1.1. Given anyε ∈ [0, 1], there exists an algorithm for choosingpt such that

maxiIi ≤ I + ε(P + L) +
ln m

ε

whereI,P,L are the expected income, profit and loss.

Let’s start by definingxt
i =

∑t
τ=1 Iτ

i . Our algorithm is to choose a strategy similarly to the algorithm
presented in the last lecture, settingpt+1

i according toeεxt
i .

pt+1
i =

eεxt
i∑

j eεxt
j

The weights on each strategy are

wt
i =

t∏
τ=1

(1 + ε)I
τ
i =

t∏
τ=1

e(Iτ
i ln(1+ε))

= ext
i log(1+ε) ' eεxt

i

The intuition really comes from the continuous (in time) version of the problem. In the continuous
version

• xt
i = cumulative income up to timet.
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• dxt
i = incremental income at timet.

•

I =
∫

C

m∑
i=1

pt
i dxt

i =
∫

C

(
∑

eεxt
i dxt

i)∑
eεxt

j

, where we’re integrating over the curveC of cumulative income ofm strategies from(0, 0, . . . , 0) to
(I1, I2, . . . , Im).

Let

Φ(x1, . . . , xm) = ln

m∑
i=1

eεxi

dΦ =
ε
∑m

i=1 exi dxi∑m
i=1 eεxi

We now have

I =
1
ε

∫
C

dΦ =
1
ε

(Φ(I1, . . . , Im)− Φ(0, . . . , 0))

=
1
ε

(
ln

m∑
i=1

eεIi − ln m

)

≥ 1
ε

(
ln maxie

εIi − ln m
)

=
1
ε
maxiln eεIi − ln m

= maxiIi −
ln m

ε

We conclude that

maxiIi ≤ I +
ln m

ε

The proof for the discrete version of the problem is similar.

Some concluding remarks about this algorithm. We’re interested in findingmaxiαi. ln
∑m

i eαi is a
very good approximation since the following holds

maxiαi ≤ ln
m∑
i

eαi ≤ maxiαi + ln m

Furthermore, this function is differentiable

d ln
∑

eαi

d αi
=

ealphai∑
eαj

Intuitively, it is some form of steepest decent, going in the direction of the partial derivatives.
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1.2 Minimizing regret

We have a decision maker takingN actions, choosing a probability distributionpt on each round. The loss
is defined aslt ∈ [0, 1]N and the total loss isLH =

∑
t

∑
i p

t
il

t
i.

So far we were minimizingexternalregret

LH −miniL
t
i

Minimizing internal regret is

LH − Lmin(i → j) = maxi,j

∑
t

pt
i(l

t
i − ltj)

where(i → j) represents making one global change in the strategy.

Minimizing swapregret is

LT
H −min LT (i → F (i)) =

∑
t

∑
i

pt
i(l

t
i − ltF (i))

whereF is a function{1 . . . N} → {1 . . . N}.

1.2.1 Correlated equilibria

Definition 1.1. The empirical distribution overAj is

p(α1, . . . , αn) =
1
T

T∑
t=1

pt
1(α1)pt

2(α2) · · · pt
n(αn)

Definition 1.2. A probability distributionp over a set of actionsA1 × A2 × · · · × An is anε-correlated
equilibrium if ∀j,∀F : Aj → Aj

Eα∼p(uj(αj , α−j)) ≤ Eα∼p(uj(F (αj), α−j)) + ε (1.1)

uj(αi, . . . , αm) is the loss to playerj when∀k, playerk playsαk.

(1.1) can be written alternatively as∑
(α1,...,αn)

p(α1, . . . , αn)uj(α1, . . . , αn) ≤
∑

(α1,...,αn)

p(α1, . . . , αn)uj(. . . , F (αj), . . .) + ε

Theorem 1.2. Consider a game ofn players, where forT times steps, each player plays according to some
strategy with swap regret≤ α. Then the empirical distribution of joint actions is aαT -correlated equilibrium.

Proof. Canceling outT , we need to show that∑
t

∑
(α1,...,αn)

pt
1(α1)pt

2(α2) · · · pt
n(αn)uj(α1, . . . , αn) ≤

∑
t

∑
(α1,...,αn)

pt
1(α1)pt

2(α2) · · · pt
n(αn)uj(. . . , F (αn), . . .) + α
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The left hand side can be written as∑
t

∑
αj

pt
j(αj)

∑
α−j

pt
−j(α−j)uj(α1, . . . , αn)
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