Lecture 1

More on learning from expert advice

Feb 11, 2005 Lecturer: Anna Karlin Notes: Ioannis Giotis

1.1 Online experts continued

Consider a sequence of time steps $t = 1 \dots T$, where in each step we choose among m strategies. During each round, our online learner chooses a distribution p^t . Afterwards the environment-adversary chooses a profit \mathcal{P}_i^t and loss \mathcal{L}_i^t for each strategy i yielding the profit and loss vectors \mathcal{P}^t and \mathcal{L}^t . We consider all profit and loss values normalized in the range [0, 1].

The agent earns $(p^t, \mathcal{P}^t - \mathcal{L}^t)$. We also define the *income* on each round as $\mathcal{I}_i^t = \mathcal{P}_i^t - \mathcal{L}_i^t$. $\mathcal{I}_i = sum_{t=1}^T \mathcal{I}_i^t$.

Theorem 1.1. Given any $\varepsilon \in [0, 1]$, there exists an algorithm for choosing p^t such that

$$max_i\mathcal{I}_i \leq \mathcal{I} + \varepsilon(\mathcal{P} + \mathcal{L}) + \frac{\ln m}{\varepsilon}$$

where $\mathcal{I}, \mathcal{P}, \mathcal{L}$ are the expected income, profit and loss.

Let's start by defining $x_i^t = \sum_{\tau=1}^t \mathcal{I}_i^{\tau}$. Our algorithm is to choose a strategy similarly to the algorithm presented in the last lecture, setting p_i^{t+1} according to $e^{\varepsilon x_i^t}$.

$$p_i^{t+1} = \frac{e^{\varepsilon x_i^t}}{\sum_j e^{\varepsilon x_j^t}}$$

The weights on each strategy are

$$w_i^t = \prod_{\tau=1}^t (1+\varepsilon)^{\mathcal{I}_i^\tau} = \prod_{\tau=1}^t e^{(\mathcal{I}_i^\tau \ln(1+\varepsilon))}$$
$$= e^{x_i^t \log(1+\varepsilon)} \simeq e^{\varepsilon x_i^t}$$

The intuition really comes from the continuous (in time) version of the problem. In the continuous version

• x_i^t = cumulative income up to time t.

• $dx_i^t =$ incremental income at time t.

٠

$$\mathcal{I} = \int_C \sum_{i=1}^m p_i^t \, dx_i^t = \int_C \frac{\left(\sum e^{\varepsilon x_i^t} \, dx_i^t\right)}{\sum e^{\varepsilon x_j^t}}$$

, where we're integrating over the curve C of cumulative income of m strategies from (0, 0, ..., 0) to $(\mathcal{I}_1, \mathcal{I}_2, ..., \mathcal{I}_m)$.

Let

$$\Phi(x_1, \dots, x_m) = ln \sum_{i=1}^m e^{\varepsilon x_i}$$
$$d\Phi = \frac{\varepsilon \sum_{i=1}^m e^{x_i} dx_i}{\sum_{i=1}^m e^{\varepsilon x_i}}$$

We now have

$$\begin{aligned} \mathcal{I} &= \frac{1}{\varepsilon} \int_{C} d\Phi = \frac{1}{\varepsilon} \left(\Phi(\mathcal{I}_{1}, \dots, \mathcal{I}_{m}) - \Phi(0, \dots, 0) \right) \\ &= \frac{1}{\varepsilon} \left(ln \sum_{i=1}^{m} e^{\varepsilon \mathcal{I}_{i}} - ln m \right) \\ &\geq \frac{1}{\varepsilon} \left(ln \max_{i} e^{\varepsilon \mathcal{I}_{i}} - ln m \right) \\ &= \frac{1}{\varepsilon} \max_{i} ln e^{\varepsilon \mathcal{I}_{i}} - ln m \\ &= \max_{i} \mathcal{I}_{i} - \frac{ln m}{\varepsilon} \end{aligned}$$

We conclude that

$$max_i\mathcal{I}_i \leq \mathcal{I} + \frac{\ln m}{\varepsilon}$$

The proof for the discrete version of the problem is similar.

Some concluding remarks about this algorithm. We're interested in finding $max_i\alpha_i$. $ln \sum_{i=1}^{m} e^{\alpha_i}$ is a very good approximation since the following holds

$$max_i\alpha_i \le ln \sum_{i}^{m} e^{\alpha_i} \le max_i\alpha_i + ln m$$

Furthermore, this function is differentiable

$$\frac{\mathfrak{d}\,\ln\,\sum e^{\alpha_i}}{\mathfrak{d}\,\alpha_i} = \frac{e^{alpha_i}}{\sum e^{\alpha_j}}$$

Intuitively, it is some form of steepest decent, going in the direction of the partial derivatives.

1.2 Minimizing regret

We have a decision maker taking N actions, choosing a probability distribution p^t on each round. The loss is defined as $l^t \in [0,1]^N$ and the total loss is $L_H = \sum_t \sum_i p_i^t l_i^t$.

So far we were minimizing external regret

$$L_H - min_i L_i^t$$

Minimizing internal regret is

$$L_H - L_{min}(i \to j) = max_{i,j} \sum_t p_i^t (l_i^t - l_j^t)$$

where $(i \rightarrow j)$ represents making one global change in the strategy.

Minimizing swap regret is

$$L_H^T - \min L^T(i \to F(i)) = \sum_t \sum_i p_i^t (l_i^t - l_{F(i)}^t)$$

where F is a function $\{1 \dots N\} \rightarrow \{1 \dots N\}$.

1.2.1 Correlated equilibria

Definition 1.1. The empirical distribution over A_j is

$$p(\alpha_1, \dots, \alpha_n) = \frac{1}{T} \sum_{t=1}^T p_1^t(\alpha_1) p_2^t(\alpha_2) \cdots p_n^t(\alpha_n)$$

Definition 1.2. A probability distribution p over a set of actions $A_1 \times A_2 \times \cdots \times A_n$ is an ε -correlated equilibrium if $\forall j, \forall F : A_j \to A_j$

$$E_{\alpha \sim p}(u_j(\alpha_j, \alpha_{-j})) \le E_{\alpha \sim p}(u_j(F(\alpha_j), \alpha_{-j})) + \varepsilon$$
(1.1)

 $u_j(\alpha_i, \ldots, \alpha_m)$ is the loss to player j when $\forall k$, player k plays α_k .

(1.1) can be written alternatively as

$$\sum_{(\alpha_1,\ldots,\alpha_n)} p(\alpha_1,\ldots,\alpha_n) u_j(\alpha_1,\ldots,\alpha_n) \le \sum_{(\alpha_1,\ldots,\alpha_n)} p(\alpha_1,\ldots,\alpha_n) u_j(\ldots,F(\alpha_j),\ldots) + \varepsilon$$

Theorem 1.2. Consider a game of n players, where for T times steps, each player plays according to some strategy with swap regret $\leq \alpha$. Then the empirical distribution of joint actions is a $\frac{\alpha}{T}$ -correlated equilibrium.

Proof. Canceling out T, we need to show that

$$\sum_{t} \sum_{(\alpha_1,\dots,\alpha_n)} p_1^t(\alpha_1) p_2^t(\alpha_2) \cdots p_n^t(\alpha_n) u_j(\alpha_1,\dots,\alpha_n) \leq \sum_{t} \sum_{(\alpha_1,\dots,\alpha_n)} p_1^t(\alpha_1) p_2^t(\alpha_2) \cdots p_n^t(\alpha_n) u_j(\dots,F(\alpha_n),\dots) + \alpha$$

The left hand side can be written as

$$\sum_{t} \sum_{\alpha_j} p_j^t(\alpha_j) \sum_{\alpha_{-j}} p_{-j}^t(\alpha_{-j}) u_j(\alpha_1, \dots, \alpha_n)$$

n	-	-	-	٦
L				
н				
н				