
Lecture 3

Algorithms for single shot and repeated 0-sum games

April 8, 2005
Lecturer: Anna Karlin

Notes: Chris Ŕe

3.1 Overview

So far we have discussed different solution concepts for games. Each of these solution concepts gives a value
of a game under assumptions about how players will play. In this lecture, we will examine how players find
the solutions that correspond to these different solution concepts. A solution’s existence does us little good
if finding how to play it is intractable.

We show how to find Nash equilibria by solving a linear program. Along the way we will examine some
basic properties of games, for example: In a one shot game does it matter who goes first? Last we examine
repeated games. We give an algorithm that gets the value of the game over the long term.

3.2 0 or Constant Sum Games

Notice it is without loss of generality that we say 0 sum games, since adding a constant or multiplying by a
constant factor would change little. In what follows, we will be analyzing payoffs from the point of view of
the row player.

3.2.1 Some Definitions

We start with a discussion of a classical result for 0 sum games. These games are among the simplest and
nicest games so we will do a quick review of them. Here ann× n matrix,M represents the payoffs for the
game. Specifically,Mij is the payoff to the row player, if the row player plays strategyi and the column
player strategyj. The game is called 0 sum because the column players payoff is−Mij that is their sum is
0.

Definition 3.1. Given∆ = {x ∈ Rn|
∑

xi = 1, xi ≥ 0}. An x ∈ ∆ is called astrategy distribution

A vectorx ∈ ∆ is an assignment of weights to each of then strategies.

Let p denote the row player’s strategy andq denote the column player’s stategy. We can calculate the
expected payoff of two strategies in the obvious way

∑n
i=1

∑n
j=1 piqjMij . Sometimes we will denote this

by M(p, q).

15



3.2.2 Going first

Intuitively, it seems like a disadvantage to go first because your opponent can then tailor their strategy to
yours. To make this more precise, suppose that you received payoffMij as a result of playing in the first
round. Now suppose that your opponent played some strategyj′ to start with and you again play strategyi.
Then your payoff isMij′ . You know thatMij′ ≥Mij because your opponent should be trying to minimize
along the rowi. This is clear in a zero sum game because your opponent should seek to minimize your
payoff thus maximizing his own. As a result, it is clearly at least as good to go second. The natural question
now is: Is it better to go second?

3.2.3 Von Neumann’s Theorem

We will answer this question by transforming our problem into a linear program and then appealing to strong
duality to tell us that the answer is no. To do this we need some notation, letA∗ be the row players payoff if
row player goes first and plays optimally. LetB∗ be the row players payoff if the row player goes second.
The discussion in section 3.2.2 makes clear thatA∗ ≤ B∗. We can write formulae for these terms explicitly:

A∗ = max
p

min
q

∑
i

∑
j

piqjMij

B∗ = min
q

max
p

∑
i

∑
j

piqjMij

Remark.Notice there is a pure strategy that is a best response when going second. This is because it never
makes sense to put weight on a non maximium valued strategy index after the opponents strategy is given.
As a result, you just pick any one of the maximium responses which is clearly at least as good.

Notice that a similiar remark about going first does not hold. For example think of the tossing coins
game we saw. In this game if you go first and select a pure strategy, say always heads, then you will lose
every time while the mixed solution has you winning about half the time.

Theorem 3.1 (von Nuemann).MinMax TheoremA∗ = B∗1

First let us write the column player goes first as a linear programming. From our above remark it suffices
to consider the case where the second player plays a pure stategy. This allows to wrie the following linear
program inn + 1 variables, the stategy indicies and the payoff.

Let B = maxi
∑

Mijqj , we seek to minimizeB.

B −
∑

Mijqj ≥ 0
...

...
B −

∑
Mnjqj ≥ 0∑
qj = 1

∀i qi qi ≥ 0

The program for row player goes first isA = minj
∑

Mijpi, we seek to maximizeA.

1Prof. Beame recommends a freely avaialable book by a similiar name. The book is a=b available from
http://www.cis.upenn.edu/ wilf/AeqB.html

16



∑
Mi1pi ≥ A
...

...∑
Minpi ≥ A∑

pi = 1
∀ipi pi ≥ 0

Proof. By Linear Programming Strong DualityWe need to show that these programs are duals. Their
optimization terms are dual. Notice that we get

∑
pi ≤ 1 as the dual condition which is not exactly what we

wanted. If there is a non-zeropi solution, then since we are maximizing theA we can without loss assume
there is one where

∑
pi = 1 since it can only improve. Now we have shown

max
p

min
j

∑
Mijpi = min

q
max
p

∑
i

∑
j

piqjMij

which suffices to show the theorem.

3.2.4 Solutions and Nash Equilibria

If you solve the program and its dual from section 3.2.3, you get a pair of vectors that are strategies we call
thesep∗, q∗. We will denote byM(p∗, q∗) the expected value of the game under these stategies. We call the
tuple(p∗, q∗,M(p∗, q∗)) a solution to the game. Now, we are going to relate this solution to our notion of
Nash equilibrium.

Theorem 3.2. (p∗, q∗,M(p∗, q∗)) is a solution to a game iffp∗, q∗ is a mixed Nash Equilibrium.

Proof.
max
p

M(p, q∗) ≤M(p∗, q∗) ≤ min
q

M(p∗, q)

These inequalities hold if(p∗, q∗) is a Nash Equilibrium. This precisely says that neither player has incentive
to deviate.

Now notice that minq maxp M(p, q) ≤ maxp M(p, q∗) and similiarily minq M(p∗, q) ≤
maxp minq M(p, q).

By theorem 3.1, these two quantities are equal. This proves the theorem in both directions since all
inequalities collapse to equalities.

There are still some things we would like to deal with: What if this M matrix is very large or unknown
to the players? What if one of the players is dumb (i.e. not playing optimally)?

3.3 Repeated Games

Up until now, we have just considered one shot games. Now we want to play the same game repeatedly,
more formally here is the setup.

• Row Player chooses a mixed strategypt for time stept.

17



• Column Player choosesqt for the same step.

• Row Player observes the payoffs∀i M(i, qt)

• Row Player getsM(pt, qt)

We would like to do as well as the best fixed strategy against the column players choices. Notice, we are
not considering how we do against the best dynamic algorithm - it is against a fixed choice of strategy for
all plays.

Remark.Notice that we are learning all payoffs against that strategy - not just the one we receive. This is
for simplification and there are extensions that deal with these more general cases.

3.3.1 Learning from Experts

A choice of strategies at each step, your choice corresponds to with what weight you choose to listen to
one of the experts. After each stage you experience the gain of your expert. In this case we will give an
algorithm such that:

E[gain] ≥ Gopt(1−
ε

2
)− gmax

ε
log n

3.3.2 Weighted Majority

There are many variations of this algorithm but, they seem to follow the same flavor.

Let wi(t) denote the weight given to experti at timet. Let w(t) denote
∑n

i wi(t).

At time zero, initialize the weights fori ∈ {1, . . . , n} setwi(0) = 1. At each stage we pick an expert
with probability wi

w .

Given gains(g1, . . . , gn) at time t letĝi = giP
j gj

. We update the weights aswi(t + 1)← wi(t)(1 + ε)bgi .

First two inequalities for use in the main theorem:

Claim 3.1. (1 + ε)x ≤ 1 + εx whenε ≥ 0 andx ∈ [0, 1].

Proof. Let f(x) = (1+ε)x−1−xε. The inequality holds iff(x) ≤ 0 on [0, 1]. Notice its second derivative,
(1 + ε)x log(1 + ε)2, is strictly positive on[0, 1]. This is becauseε > 0. f(0) = f(1) = 0 and it is negative
in between, so the inequality holds.

Claim 3.2. for x ≥ 0 log(1 + x) ∈ [x− x2

2 , x]

Proof. Clearly this holds at 0, they all equal 0.

Examine the derivative oflog(1+x)−x = 1
1+x−1 which is always non-positive on[0,∞). This shows

log(1 + x) ≤ x.

Now, 1
1+x−1+x = −x+x+x2

1+x = x2

1+x which is always non-negative on[0,∞). This showslog(1+x) ≥
x− x2

2 .

18



Theorem 3.3.
E[gain] ≥ Gopt(1−

ε

2
)− gmax

ε
log n

Proof. Let Et =
∑

i
wi
w gi(t), this is our expected gain in thetth round.

Let Êt = Et
gmax

. Consider thetth stage of the algorithm.

w(t + 1) =
∑

i

wi(1 + ε)bgi ≤
∑

i

(1 + ĝiε) by claim 3.1

= w(t) + w(t) ∗ Et ∗ ε = w(t)(1 + εEt)

Let tend be the index of the final game. Now,(1 + ε)dgopt ≤ w(tend) becausêgopt represents a single
weight used in the update andw(tend) is a sum over all of them.

w(tend) ≤ w(0)
∏tend

t (1 + εÊt) = n
∏

t(1 + εÊt) holds by the above sincegmax ≤ 1 and the weights
are initialized to 1. So we have the following situation.

ĝopt log(1 + ε) ≤ log n +
tend∑

t

log(1 + εÊt)

We can use claim 3.2 to estimate this and get:

ĝopt(ε−
ε2

2
) ≤ log n +

tend∑
t

εÊt

⇒
tend∑

t

Êt ≥ Gopt(1−
ε

2
)− log n

ε

3.3.3 Application of Weighted Majority to Learning from Experts

We can directly apply this to our situation. In our case the experts are rowsgi(t) = M(i, qt). Our goal
is to show that in the ’long term’, we get the value of the game. In this case, by long term we mean the
expectation of our strategy is equal to the value of the game.

Let’s examine the average per round payoff, letT be the number of rounds:

max
i

∑
j

Mij(
1
T

T∑
t

qj(t)) ≥ min
q

max
i

∑
j

Mijqj(t)

The minimium value ofq is independent of time, so clearly this is lower than the average value over
time. Notice that this right hand side is the value of the game at each step - so we have our desired solution.

19


