
 
 
 
 
 
 
 
 
 
 
 
 
 

For more information, 

ebusiness@mit.edu or 617-253-7054 
please visit our website at http://ebusiness.mit.edu 

or contact the Center directly at

A research and education initiative at the MIT
Sloan School of Management

Efficiency and Robustness of Binary Feedback 
Mechanisms in Trading Environments with 

Moral Hazard 
 

Paper 170 
 
 
Chris Dellarocas 
 

January 2003 

 



E�ciency and Robustness of Binary Feedback Mechanisms in
Trading Environments with Moral Hazard

Chrysanthos Dellarocas ∗

January 23, 2003

Abstract

This paper o�ers a systematic exploration of online feedback mechanism design issues in
trading environments with opportunistic sellers, imperfect monitoring of a seller's e�ort level,
and two possible transaction outcomes (corresponding to �high� and �low� quality respectively),
one of which has no value to buyers. The objective of feedback mechanisms in such settings is
to induce sellers to exert high e�ort and, therefore, to maximize the probability of high quality
outcomes. I study a practically signi�cant family of mechanisms that resembles aspects of the
one used by online auction house eBay. These feedback mechanisms solicit �binary� ratings of
transaction outcomes as either positive or negative and publish the sums of ratings posted by
buyers on a seller during the N most recent periods. My analysis �nds that such �binary� feed-
back mechanisms can induce high average levels of cooperation that remain stable over time.
Surprisingly, their e�ciency cannot be improved by summarizing larger numbers of ratings or by
publishing a seller's detailed feedback history. I further examine the robustness of these mecha-
nisms to incorrect or incomplete feedback as well as to strategic changes of online identities. The
theoretical outcomes predicted by this paper are consistent with empirical observations and o�er
theory-backed explanations to hitherto poorly understood phenomena such as the remarkably
low fraction of negative feedback on eBay.
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mail: dell@mit.edu. This material is based upon work supported by the National Science Foundation under CAREER
Grant No. 9984147. I am grateful to Yannis Bakos, Erik Brynjolfsson, Jacques Crémer, Roy Radner, Jean Tirole,
Dimitri Vayanos, and the participants of seminars at IDEI, London Business School, MIT, Stanford, U. Minnesota,
and U. Pompeu Fabra for helpful comments.
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1 Introduction

Online feedback mechanisms (Dellarocas, 2003; Resnick, et. al., 2000) are emerging as a promising
approach for building trust and fostering cooperation in trading environments where more established
methods of social control (such as state regulation or the threat of litigation) are often di�cult or too
costly to implement. Their growing popularity motivates rigorous research in better understanding
how these systems a�ect behavior in communities where they are introduced and how they can be
designed to achieve maximally e�cient outcomes.

The use of word-of-mouth networks as a basis for social control is arguably as old as society itself
(Greif, 1993; Klein, 1997; Milgrom, North and Weingast, 1990.) Historically, the role of such net-
works has been to promote discipline and learning among community members. In communities of
opportunistic players the existence of word-of-mouth networks provides them with incentives to re-
frain from cheating for fear of social exclusion. In communities where players might vary in character
(e.g. some players might be honest while others not) or ability levels, word-of-mouth, additionally,
reduces the adverse consequences of asymmetric information by helping community members learn
the (initially privately known) �type� of each player through the di�usion of reputational information.

The advent of the Internet is adding some signi�cant new dimensions to this age-old concept (Dellaro-
cas, 2003.) Most important among them is the ability to systematically design and control feedback
networks through the use of properly architected information systems (feedback mediators.) Feed-
back mediators specify who can participate in feedback communities, what type of information is
solicited from participants, how it is aggregated, and what type of information is made available to
them about other community members. They enable online community operators to exercise precise
control over a number of parameters that are di�cult or impossible to in�uence in brick-and-mortar
settings. For example, feedback mediators can replace detailed feedback histories with a wide variety
of summary statistics, apply �ltering algorithms to eliminate outlier or suspect ratings, control the
initial state of feedback pro�les of new members, etc.

Through the use of information technology, what had traditionally fallen within the realm of the
social sciences is, to a large extent, being transformed to an engineering design problem. The poten-
tial to engineer social outcomes through the introduction of carefully crafted information systems
is opening a new chapter on the frontiers of information systems research. Further progress in this
area requires a deeper understanding of the potential role of feedback mechanisms in various types of
communities, a careful scoping of the design space of online feedback mediators, and theory-driven
guidelines for selecting the most appropriate mechanism architecture for a given class of settings.
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This paper constitutes a �rst chapter in this larger research program. More speci�cally, it o�ers
a systematic exploration of online feedback mechanism design issues in trading environments with
opportunistic sellers, two seller e�ort levels, imperfect monitoring of a seller's action, and two possible
outcomes, corresponding to �high� and �low� quality respectively. Under the assumption that low
quality outcomes have no value to buyers, sellers will always promise to deliver high quality. However,
they will also be tempted to go back on their promise and exert low e�ort once they have received
payment from the buyer. The role of a feedback mechanism in such settings is todiscipline sellers,
that is, to induce them to exert high e�ort and, therefore, to maximize the probability of the high
quality outcomes promised to buyers. Although stylized, my setting captures the essential properties
of a large number of real-life trading environments, ranging from online purchasing to professional
services.

The objective of this paper is to explore what constitutes �good� feedback mechanism design in
the context of the above setting. To accomplish this I consider a fairly general class of feedback
mechanisms and study the impact of various mechanism parameters (such as the amount of infor-
mation published by the mechanism, the policy regarding missing feedback, and the initial feedback
pro�le state of new sellers) on the resulting social e�ciency. More speci�cally, I study a family of
mechanisms that:

• solicit binary feedback, that is, encourage buyers to rate transaction outcomes as either �posi-
tive� or �negative�, and

• publish a statistic that roughly corresponds to the sums of positive and negative ratings posted
by buyers on a seller during theN most recent transactions.

In the rest of this paper, I will refer to these mechanisms asbinary feedback mechanisms. Besides their
simplicity and intuitive appeal, these mechanisms are practically important because they resemble
aspects of feedback mechanisms used in a number of well-known online auction marketplaces, such
as eBay and Yahoo. In addition to their theoretical interest, the results of the paper, thus, have
implications for eBay, Yahoo, and other online communities that operate similar mechanisms.

Section 2 of the paper introduces the model. Section 3 analyzes the equilibrium outcomes induced
by binary feedback mechanisms under the assumption that sellers are rational and their payo�s are
common knowledge. My analysis results in three major �ndings:

• If buyer valuations of high quality are su�ciently high (relative to the seller's cost of high
e�ort), binary feedback mechanisms induce high average levels of cooperation that remain
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stable over time. Furthermore, the buyer and seller strategies that maximize cooperation have
a particularly simple stationary form.

• Binary feedback mechanisms incur small e�ciency losses relative to the �rst-best case; however,
these losses cannot be improved by any mechanism that publishes a seller's past feedback
history (or any truncation thereof.)

• Surprisingly, the maximum e�ciency attainable through the use of binary feedback mechanisms
is independent of the number of ratingsN summarized by the mechanism. Thus, the simplest
binary feedback mechanisms that only publish thesingle most recent rating posted for a seller
are just as e�cient as mechanisms that publish summaries ofarbitrarily large numbers of a
seller's recent ratings (or even a seller's detailed feedback history.)

Section 4 examines the robustness of binary feedback mechanisms to the presence of incorrect or
incomplete feedback, as well as to strategic manipulation of online identities. These contingencies
are particularly important in large-scale, heterogeneous online environments and therefore essential
to incorporate into the analysis of systems that are intended for use in such settings. The principal
results can be summarized as follows:

• The e�ciency induced through binary feedback mechanisms in the presence of incomplete
feedback submission depends on the mechanism's policy regarding missing feedback; the policy
that maximizes e�ciency is to treat missing ratings as positive ratings

• Under such a �no news is good news� policy, incomplete feedback submissiondoes not lower the
maximum seller payo� attainable through the mechanism (however, itdoes raise the minimum
ratio of valuation to cost necessary in order for the most e�cient equilibrium to obtain.)

• Binary feedback mechanisms are vulnerable to sellers that can costlessly disappear and re-
enter an online community under new identities (following, say, a cheating incident); this
vulnerability can be removed at some e�ciency loss by setting the initial state of the feedback
pro�le of newcomer sellers so that it corresponds to the �worst� possible reputation1.

• The e�ciency loss associated with preventing easy name changes is minimized whenN = 1.
Interestingly, in environments where players can costlessly change their identities, the simplest
mechanisms, i.e. ones that only publish the single most recent rating, arestrictly more e�cient
than mechanisms that summarize larger numbers of ratings.

1Friedman and Resnick (2001) report a similar �nding in the context of a repeated prisoner's dilemma game.
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Section 5 compares the outcomes predicted by the preceding analysis to some of the results of
empirical studies on eBay. I �nd a remarkable consistency between the predictions of theory and
the �ndings of empirical work and o�er theory-backed explanations to hitherto poorly understood
phenomena such as the remarkably low fraction of negative feedback on eBay. Finally, Section 6
summarizes the implications of the results of this paper for online marketplaces and discusses possible
extensions of this work.

2 Binary feedback mechanisms in settings with moral hazard

This section presents a model that will allow us to study the properties of binary feedback mecha-
nisms in settings with moral hazard and two possible outcomes.

2.1 The setting

The setting involves a marketplace where, in each period, a monopolist long-run seller provides one
unit of a product or a service (�good�) to one of multiple short-run buyers. The good is either �high
quality� or �low quality�, but only high quality is acceptable to the buyers. Following receipt of
payment, the seller can exert either �high e�ort� (�cooperate�) or �low e�ort� (�cheat�.) The buyer
privately observes the quality of the good delivered, but not the e�ort exerted by the seller. Moral
hazard is introduced because high e�ort is costlier to the seller, who can reduce his costs by failing
to exert high e�ort, providing the buyer with a good of lower expected quality.

More formally, I analyze a setting with a monopolist seller who each period o�ers for sale a single
unit of a good to m buyers. Buyer i has valuation wi for a high quality good and all buyers value a
low quality good at zero. Buyer lifetime is exactly one period and in each period them buyers are
drawn from the same probability distribution, thus buyer valuations are independent and identically
distributed within and across periods. There are an in�nite number of periods and the seller has a
period discount factor δ re�ecting the time value of money, or the probability that the game will end
after each period. Seller e�ort determines the probability that the good provided will be perceived
by the buyer as being low quality: if the seller exerts low e�ort, the good will be of low quality with
probability β, whereas if the seller exerts high e�ort he will incur an additional costc and the good
will be of low quality with a smaller probability α (α < β). The seller's objective is to maximize
the present value of his payo�s over the entire span of the game, while the buyers' objective is to
maximize their short-term (stage game) payo�.
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In each period a mechanism is used to allocate the good among them buyers by determining the
buyer that receives the good and the price she pays to the seller. Without loss of generality we
assume that buyers are indexed according to their valuations (w1 ≥ w2 ≥ ... ≥ wm). Furthermore,
we assume that a second price Vickrey auction is used to award the good to the buyer with the highest
valuation w1 for a high quality good. The winning bidder pays a price equal to the -second-highest
bid G; the valuation of the second-highest bidder for a high quality good isw2.

While stylized, the above setting captures the essential properties of a large number of important real-
life economic settings, ranging from the provision of professional services, to online purchasing and
auctions like eBay. In professional services (medical consultations, auditing, construction projects,
etc.) there are well de�ned standards of high quality service and the uncertainty is focused on
whether the provider will adhere to those standards or try to �cut corners�. In mail order or online
purchasing the moral hazard is focused on whether, following receipt of payment, the seller will
provide a good of the quality advertised.

My formulation assumes that the seller has known costs and conditional probabilities of outcomes
given e�ort. I argue that this assumption is reasonable in online retail environments where seller
actions are simple (ship/not ship), cost structures relatively standard, and conditional probabilities of
transaction outcomes given a seller's action primarily determined by factors (such as the probability
of damage or delay during shipping, the probability that a buyer misunderstood a seller's item
description, etc.) that are exogenous to a seller's innate ability levels. In such settings, the principal
role of a feedback mechanism is to impose discipline (i.e. elicit cooperation) rather than to facilitate
learning.

2.2 Binary feedback mechanisms

In the above setting, I consider a family of feedback mechanisms that allow buyers to rate the seller
based on the quality of the good received. Buyers report the outcome of a transaction as either
�positive� or �negative�, with positive ratings indicating that a high quality good was received, and
negative ratings indicating low quality. The mechanisms provide buyers with a summary of that
seller's most recent ratings. Speci�cally, the only information available to buyers is a statisticx
that is approximately equal to the total number of negative ratings posted on the seller during the
most recent N transactions, where N is a parameter under the control of the mechanism designer.
Because of the �binary� nature of the feedback solicited by these mechanisms, I will refer to them in
the rest of the paper as binary feedback mechanisms.
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If N remains constant for the duration of the game, a seller's feedback pro�le is completely character-
ized by the number of negative ratingsx in the current �time window�. Binary feedback mechanisms
initialize and update a seller's feedback pro�le according to the following procedure:

• Initialization: At the beginning of the game, the mechanism creates an unordered setW of
cardinality N . W is initialized to contain x0 negative reports and N − x0 positive reports,
where x0 is a parameter under the control of the mechanism designer. The seller's feedback
pro�le is initialized to x0

• Update: At the end of every period, the mechanism selects a report r′ ∈ W at random and
replaces it with the report (�+� or �-�) submitted by the buyer in the current period. It then
sets the seller's feedback pro�le equal to the new sumx of negative reports in the updated set
W

It is easy to see that the above pro�le updating procedure can be equivalently expressed as a function
τ of the current pro�le x and report (�+� or �-�) as follows:

τ(x,+) =

{
x with probability 1− x/N

x− 1 with probability x/N

τ(x,−) =

{
x + 1 with probability 1− x/N

x with probability x/N

The objective of the random replacement algorithm is to eliminate whatever advantages long-run
sellers may have from knowing the exact sequence of past ratings (which buyers ignore since I
assumed that the only information that is available to them is the statisticx.)2

Besides their simplicity and theoretical elegance, binary feedback mechanisms are practically sig-
ni�cant because they resemble aspects of commercial online feedback tracking systems, such as the
ones used by eBay and Yahoo Auctions. For example, if we ignore neutral ratings and viewN as an

2Proposition 3.2 shows that the information loss associated with the random replacement algorithm does not
a�ect payo�s. Speci�cally, I show that the simple feedback mechanisms presented in this section succeed in inducing
stationary equilibria in which seller payo�s are as high as in settings where the exact sequence of past ratings is known
to all players.
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Figure 1: eBay's ID Card

estimate of the number of transactions performed by a seller during a six-month period, binary feed-
back mechanisms can be thought of as an approximate model of eBay's �ID Card�, which summarizes
ratings posted on a seller during the most recent six-month period (Figure 1.)

Table 1 summarizes the stage game of the repeated bilateral exchange game that serves as the setting
of this work. Our objective in the rest of this paper is to study the behaviors induced by binary
feedback mechanisms in the above setting and to explore the e�ects of mechanism parametersN
and x0 on e�ciency and robustness.

3 Equilibrium play and payo�s under complete information

This section derives the equilibrium strategies and maximum expected auction revenue and seller
payo�s induced by binary feedback mechanisms under the assumption that all buyers and sellers are
rational and their respective payo�s are common knowledge.

3.1 Derivation of equilibrium play and payo�s

Let s(x, t, h(t)) ∈ [0, 1] denote the seller's strategy in period t, equal to the probability that the seller
will cooperate (i.e., exert high e�ort) following receipt of payment in periodt if the past history of
play is h(t) and his current feedback pro�le containsx ∈ {0, ..., N} negative ratings at the beginning
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1. Seller o�ers a single unit of a good, promising to deliver a high quality good (as there is no
demand for a low quality good.)

2. System publishes the seller's current feedback pro�lex, roughly corresponding to the number
of negative ratings posted on the seller in theN most recent transactions.

3. Buyers bid their expected valuations for the good in a second price Vickrey auction; the
winning bidder paysG, which is the second-highest bid; we denote byw1 and w2 the respective
valuations for a high quality good of the winning bidder and the second-highest bidder.

4. Seller decides whether to exert high e�ort at costc, or low e�ort at cost 0, with corresponding
probabilities that the resulting good is of low quality beingα and β (α < β.)

5. Buyer receives the good, experiences its quality, and realizes the corresponding valuationw1

for a high quality good or 0 for a low quality good. Buyer reports on the quality of the good
received to the system, and the feedback pro�le of the seller is updated accordingly.

Table 1: Stage game of repeated bilateral exchange game studied in this paper.

of the period3. I will restrict the seller to stationary strategies, wheres(x, t, h(t)) does not depend
on past history or time, and thus s(x, t, h(t)) ≡ s(x)4. Let s = [s(0), ..., s(N)] denote the seller's
stationary strategy vector.

Given the seller's strategy, short-term buyers simply play the corresponding stage-game static best
response. Since they compete with each other on a Vickrey auction, each buyer's optimal action in
each period will be to bid an amount equal to her expected valuation

Gi(x, s) = {s(x)(1− α) + [1− s(x)](1− β)}wi = [s(x)(β − a) + (1− β)]wi (1)

resulting in expected auction revenue for that period

G(x, s) = [s(x)(β − a) + (1− β)]w2 (2)

where w2 is the second highest bidder's valuation of a high quality good. The seller's corresponding
current period payo� is:

3The past history of play includes the bid amounts, seller actions, and buyer ratings for all past periods and the
bid amounts for the current period.

4In Proposition 3.1 I show that the equilibrium seller payo�s attainable through stationary strategies cannot be
improved by any other strategy that makes use of his (private) knowledge of the past history of play. The seller, thus,
does not need to consider more complex strategies.
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hs(x, s) = G(x, s)− s(x)c = [s(x)(β − a) + (1− β)]w2 − s(x)c (3)

The expected surplus for the winning bidder is

hb(x, s) = [s(x)(β − a) + (1− β)] (w1 − w2) (4)

where w1 is the winning bidder's valuation of a high quality good.

The following analysis assumes that buyers always submit ratings that truthfully re�ect their quality
observations. From a theoretical perspective this can be weakly justi�ed if we make the assump-
tion that buyers only transact with a given seller once (an assumption that is quite reasonable in
large-scale electronic markets.) Buyers are then indi�erent between truthful reporting, untruthful
reporting and no reporting. In reality, however, submission of online ratings incurs a small cost as-
sociated with the time required to log on to the feedback site and �ll the necessary feedback forms.
Fortunately, it is not di�cult to devise a side payment mechanism that provides buyers with strict
incentives to both participate in the feedback mechanism as well as rate truthfully (see Kandori
and Matsushima, 1998; Miller, Resnick and Zeckhauser, 2002.) Such a mechanism can be easily
combined with the mechanism I present in this paper.

Since a seller's choice of e�ort level takes place after payment for the current period has been
received, the seller's objective is to select s so as to maximize the present value of his payo� in
the remaining game. If the seller exerts high e�ort in the current period, he incurs an immediate
cost c; the resulting quality of the good will be perceived as high with probability1 − α and low
with probability α. If, on the other hand, he exerts low e�ort he incurs no immediate cost but the
probability of high (low) quality becomes 1− β (β)5

Under the assumption of complete and truthful reporting, it is easy to see that the pro�le updating
function τ described in Section 2.2 gives rise to the feedback pro�le transition probabilities listed in
Table 2.

Let U(x, s) denote the seller's expected future payo� immediatelyafter he receives payment for the
current period if his current feedback pro�le containsx negatives. Given the transition probabilities

5In some online retail settings it is more realistic to assume that sellers decide their next action (and incur the
corresponding cost) at the beginning of each period. For example, online eBay sellers usually buy products wholesale
before they advertise them (as opposed to after they receive payment.) Although the precise formulation of such a
model di�ers in slight ways from the current one, the solution of the two models is identical.
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If seller cooperates: If seller cheats:

x + 1 with probability α(1− x/N) x + 1 with probability β(1− x/N)
x with probability αx/N + (1− α)(1− x/N) x with probability βx/N + (1− β)(1− x/N)
x− 1 with probability (1− α)x/N x− 1 with probability (1− β)x/N

Table 2: Transition probabilities of seller's feedback pro�le if his current state isx

of Table 2, the expected future payo� is

Ucoop(x, s) = −c+δ[α(1− x

N
)V (x+1, s)+[α

x

N
+(1−α)(1− x

N
)]V (x, s)+(1−α)

x

N
V (x−1, s)] (5)

if the seller cooperates

Ucheat(x, s) = δ[β(1− x

N
)V (x + 1, s) + [β

x

N
+ (1− β)(1− x

N
)]V (x, s) + (1− β)

x

N
V (x− 1, s)] (6)

if the seller cheats, and

U(x, s) = s(x)Ucoop(x, s) + [1− s(x)]Ucheat(x, s) (7)

if he follows a mixed strategy. In the above equationsV (x, s) = G(x, s)+U(x, s) denotes the seller's
expected future payo� at the beginning of a period where the seller's feedback pro�le contains x

negatives.

In this setting, a strategy s is an equilibrium strategy if and only if it satis�es the incentive compat-
ibility constraints:

s(x) = 0 ⇒ Ucoop(x, s) ≤ Ucheat(x, s)
0 < s(x) < 1 ⇒ Ucoop(x, s) = Ucheat(x, s)
s(x) = 1 ⇒ Ucoop(x, s) ≥ Ucheat(x, s)

for all x = 0, ..., N (8)

Not surprisingly, this game has multiple equilibrium strategies. In the rest of the paper, we will
focus our attention on the �optimal� equilibrium strategy s∗ that maximizes the seller's expected
discounted lifetime payo�V (x0, s), where x0 is the initial state of the feedback pro�le for new sellers.
For discount factors close to one this strategy also maximizes a buyer's average per-period surplus
and, therefore, the social welfare6. This optimal strategy s∗ is the solution to the (N+1)-dimensional
constrained optimization problem:

6To see this, from (3), if (β − α)w2 > c, a seller's stage game payo� is a linearly increasing function of his
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V (x, s∗) ≥ V (x, s) for all s ∈ [0, 1]N+1 and all x = 0, ..., N , subject to the constraints (8.)

It turns out that the solution of the above problem has a particularly simple closed form. Let
ρ = w2/c; ρ is the ratio of the valuation of a high quality good to the cost of high e�ort and is
also a rough measure of the pro�t margin of a fully cooperating seller. The following proposition
summarizes the seller's optimal strategy:

Proposition 3.1:

1. If ρ < β/(β − α)2 then:

(a) the seller's optimal stationary strategy is s∗ = [s(x) = 0, x = 0, ..., N ]: always exert low
e�ort.

(b) the expected single-period auction revenue is given byG(s∗) = (1− β)w2

(c) the seller's payo� is equal to V (s∗) = (1− β)w2/(1− δ) independently of the initial state
of his feedback pro�le.

2. If ρ > [δ + N(1− δ)] /δ(β − α)2 then:

(a) the seller's optimal stationary strategy is:

s∗ = [s(x) = 1− x(1− δ +
δ

N
)

c/w2

δ(β − α)2
, x = 0, ..., N ]

(the seller always exerts high e�ort if he has zero negative ratings, otherwise he follows
a mixed strategy in which the probability of cooperation is a linearly decreasing function
of the current number of negative ratings in his pro�le.)

(b) the expected single-period auction revenue is a linearly decreasing function of the current
number of negative ratings in the seller's pro�le and given by:

G(x, s∗) = (1− α)w2 − x(1− δ +
δ

N
)

c

δ(β − α)

probability of cooperation s(x). Therefore, for discount factors close to one the maximum seller discounted lifetime
payo� corresponds to higher average levels of cooperation. From (4) the winning bidder's surplus is also a linearly
increasing function of the seller's probability of cooperation. Therefore, as the discount factor tends to one, the
strategy pro�le that maximizes the seller's payo� also maximizes the buyer's average per-period surplus.
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(c) the seller's payo� is a function of his initial pro�le state and equal to:

V (x0, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]
− x0

c

δ(β − α)

3. The above payo�s constitute an upper bound on the payo�s attainable in any sequential
equilibrium of the game; the seller, therefore, cannot improve his payo�s by considering non-
stationary strategies.

Proof: See appendix.

3.2 Discussion

Proposition 3.1 states that, if ρ = w2/c is too small, then the feedback mechanism fails to sustain
cooperation, whereas ifρ is large enough, the most e�cient equilibrium induces the seller to cooperate
fully as long as he has no negative ratings in his pro�le and otherwise to follow a mixed strategy
in which the probability of cooperation is a linearly decreasing function of the number of negative
ratings. Knowing this, buyers also bid amounts that decrease linearly with the number of negative
ratings in the seller's pro�le. Figure 2 depicts some aspects of the most e�cient equilibrium for an
illustrative set of model parameters.

The intuition behind Proposition 3.1 is the following: From (3) it is easy to see that, if(β−α)w2 > c

(a condition that always holds ifρ > [δ+N(1−δ)]/δ(β−α)2) a seller's pro�t from a single transaction
is an increasing function of s(x), where s(x) is the probability that the seller will cooperate during
periods when his feedback pro�le hasx negatives. From (4) we see that buyer surplus also increases
with s(x). It is thus to everyone's bene�t to cooperate as much as possible. Unfortunately, sellers
decide whether to cooperateafter they receive payment and then they always have a short-term gain
equal to c if they cheat. Therefore, the only way that a seller will credibly cooperate following receipt
of payment is if there is a longer-term loss for him associated with cheating. The only consequence
of cheating in this game is a higher probability of transitioning to a state with more negative ratings
and the only way that a seller can have a lower payo� in such a state is by cooperating with lower
probability (because, expecting this, buyers will then place lower bids.) Therefore, a seller can
give himself incentives to cooperate during periods when his feedback pro�le has few negatives by
�promising� to cooperate less (e�ectively �punishing himself� by doing so) if he accumulates more
negatives. Proposition 3.1 shows that, if ρ > [δ + N(1 − δ)]/δ(β − α)2, such an approach indeed
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Figure 2: Equilibrium probabilities of seller cooperation (as a function of the number of negativesx
in seller's pro�le) and corresponding stationary probabilities of havingx negatives for an illustrative
set of model parameters (δ = 0.999, α = 0.1, β = 1, ρ = 1.5 and N = 30.)

results in optimal seller payo�s for s(x) = 1−x(1− δ + δ
N ) c/w2

δ(β−α)2
: full cooperation when x = 0 and

progressively lower probability of cooperation as the number of negative ratings grows.

The condition ρ > [δ + N(1− δ)]/δ(β − α)2 expresses the fact that, for the feedback mechanism to
succeed in inducing any amount of cooperation, the buyers' valuation of high quality must be high
enough (relative to the seller's cost of exerting high e�ort) so that discounted future payo�s from
sustained cooperation are greater than short-term wealth increases obtained from cheating. This
seems to be a general property of reputation mechanisms, �rst pointed out in (Klein and Le�er,
1981) and explored more formally in (Shapiro, 1983.) The condition onρ limits the applicability of
such mechanisms to environments where the pro�t margin of cooperating sellers is su�ciently high
so that the promise of future gains o�sets the short-term temptation to cheat.

An attractive property of binary feedback mechanisms is that they allow players to maximize their
payo�s by relying on simple stationary strategies; players need not even consider more complex
strategies (or the possibility that other players may use such strategies.) This property makes these
mechanisms especially well suited to large-scale online trading environments, as it makes it easy
even for relatively inexperienced and naïve traders to perform well without having to perform an
excessively complicated analysis.

One �nal observation concerns the applicability of the above analysis to competitive environments.
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Although the setting of Section 2 involves a monopolist seller, I conjecture that the results of this
paper will not substantially change in settings where, in each period, several sellers o�er competing
auctions for the same (or for substitute) goods and each buyer elects to bid in exactly one of these
auctions. This is easy to see if we assume that buyers have identical valuations or that the number
of buyers is very large. In both cases I can assume thatw1 ≈ w2. From equation (4) the expected
surplus for the winning bidder is then equal to zero and independent of the seller's current feedback
pro�le state x. Assuming that buyers have a weak preference for winning an auction with expected
surplus zero, when faced with a number of competing auctions by sellers with di�erent reputations,
they will attempt to maximize their probability of winning by selecting one of these auctions at
random7. A seller's feedback pro�le thus does not a�ect the average number of bidders or the
distribution of the bidder valuations. Each seller can, therefore, perform the preceding analysis
independently as if he were a monopolist.

3.3 E�ciency considerations

In the presence of noise, even fully cooperating sellers will eventually accumulate negative ratings
and will, therefore, transition to periods of partial cooperation. This unfortunate property results
in e�ciency losses relative to the �rst-best case8. In our setting, the �rst-best case corresponds to
environments where sellers can credibly commit to full cooperation. Their payo� would then be equal
to Vfirst−best = [(1− α)w2 − c] /(1−δ). According to Proposition 3.1, ifρ > [δ+N(1−δ)]/δ(β−α)2

the maximum seller payo�, attainable when the seller starts the game withx0 = 0 negative ratings
(i.e. a �clean record�), is equal to

V (0, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]

We see that binary feedback mechanisms incur an e�ciency loss equal toαc/(1− δ)(β − α) relative
to the �rst-best case.

A remarkable result is that, under complete information, this e�ciency loss cannot be improved by
any mechanism that publishes a seller's entire feedback history (or any truncation thereof.) More
speci�cally, the maximum seller payo� achievable in stationary strategies through the use of binary

7Randomization is a symmetric equilibrium strategy for all buyers in this case.
8Because of imperfect monitoring of a seller's actions, buyers cannot be sure whether the presence of negative

ratings in a seller's pro�le is due to cheating or bad luck. However, in order to sustain the e�cient equilibrium of
Propostion 3.1 they must punish the seller (by bidding lower amounts) no matter what the reason. The e�ect is
reminiscent of Green and Porter's 1984 analysis of noncooperative collusion under imperfect price information.
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feedback mechanisms is equal to the maximum seller payo� achievable inany sequential equilibrium
of a perturbation of the above repeated game in which there is no state variablex but instead, (a)
buyers submit public reports (b) the entire public history of buyer reports is visible to everybody
and (c) sellers are allowed to condition their strategies on both public and private histories.

Proposition 3.2: If ρ > [δ + N(1− δ)] /δ(β − α)2 then the set of sequential equilibrium seller
payo�s of a repeated game with the stage game structure described in Table 1 and where the entire
public history of buyer reports is available to short-run players is bounded above by

V ∗ =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]

Proof: The proof makes use of the maximal score method, introduced by Fudenberg and Levine
(1994) for computing the limiting set of payo�s of games with long-run and short-run players. The
details of the proof are given in the appendix.

Another interesting, and rather unexpected, corollary of Proposition 3.1 is that, ifρ is large enough
so that the most e�cient equilibrium (Case 2) obtains, a seller's maximum payo� is independent of
the window width N .

Corollary 3.3: If ρ > [δ + N(1 − δ)]/δ(β − α)2 then the maximum seller payo� attainable by a
binary feedback mechanism is independent of the sizeN of the time window.

Proof: Obvious from the fact that, for ρ > [δ + N(1− δ)]/δ(β − α)2 the expression for V (0, s∗) is
independent of N9.

Contrary to intuition, Proposition 3.2 and Corollary 3.3 show that publishing or summarizing larger
amounts of feedback information does not improve the ability of binary feedback mechanisms to
induce cooperation in two-outcome moral hazard settings. The simplest binary feedback mechanism
is one where N = 1: in this case, a seller's pro�le x ∈ {0, 1} essentially shows the seller's single most
recent rating (x = 0 means that the last rating was positive, whilex = 1 that it was negative.) The
above results show that a mechanism that publishes the single most recent rating of a seller is just as
e�cient in dealing with two-outcome moral hazard as a mechanism that summarizes larger numbers
of recent ratings or that publishes the seller's entire feedback history. In Section 4.3 I further show
that, if sellers can costlessly disappear and reappear with new identities, settingN = 1 results in a
mechanism that is strictly more e�cient than binary feedback mechanisms that summarize ratings

9The threshold ρ = [δ + N(1 − δ)]/δ(β − α)2, above which the result holds, grows with N . However, for sellers
with frequent transactions (1− δ ≈ 0) this dependence is very weak
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over larger time windows. Although speci�c to two-outcome moral hazard settings, this result is
an encouraging indication of the power of properly designed online feedback mediators to simplify
decision-making without sacri�cing e�ciency.

4 Robustness Analysis

Online environments are characterized by large numbers of heterogeneous players whose behavior
does not always conform to the traditional game theoretic assumptions of full rationality. Further-
more, in such environments players can easily disappear and re-appear under new online identities
if it is pro�table for them to do so. It is therefore important that mechanisms intended for practical
use in such settings be robust to a number of di�erent contingencies arising from these properties.
This section examines the robustness of binary feedback mechanisms to the presence of incorrect or
incomplete feedback as well as to strategic changes of online identities.

4.1 Quality misreporting (buyer trembles)

The analysis of Section 3 was based on the assumption that buyers truthfully report their quality
observations. Nevertheless, it is plausible that some buyers might make reporting mistakes or that
there might exist some irrational buyers who always submit untruthful reports. Since we have
argued that no short-run player can bene�t from strategically misreporting her observed quality,
such mistakes can be modeled as noise. More speci�cally, letε be the (exogenous) probability that
a buyer misreports her observed quality. Then, the conditional probabilities of a negative rating
become:

α̃ = Pr[−|high e�]
= Pr[−|high qual]Pr[high qual|high e�] + Pr[−|low qual]Pr[low qual|high e�]
= ε(1− α) + (1− ε)α

(9)

β̃ = Pr[−|low e�]
= Pr[−|high qual]Pr[high qual|low e�] + Pr[−|low qual]Pr[low qual|low e�]
= ε(1− β) + (1− ε)β

(10)

The new conditional probabilities of negative ratings a�ect the expected future payo�s (equations
(5) and (6)) but not the stage-game payo�s (equations (1)-(4)), since the latter depend only on the
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probabilities of privately observed qualities. By substituting α̃, β̃ for a, β in (5) and (6) we get the
following result, analogous to Proposition 3.1:

Proposition 4.1:

1. If ρ < β̃/(β − α)(β̃ − ã) then:

(a) the seller's optimal strategy is s∗ = [s(x) = 0, x = 0, ..., N ]: always exert low e�ort.
(b) the expected single-period auction revenue is given byG(s∗) = (1− β)w2

(c) the seller's payo� is equal to V (s∗) = (1− β)w2/(1− δ) independently of the initial state
of his feedback pro�le.

2. If ρ > [δ + N(1− δ)] /δ(β − α)(β̃ − ã) then:

(a) the seller's optimal strategy is

s∗ = [s(x) = 1− x(1− δ +
δ

N
)

c/w2

δ(β − α)(β̃ − ã)
, x = 0, ..., N ]

(the seller always exerts high e�ort if he has zero negative ratings, otherwise he follows
a mixed strategy in which the probability of cooperation is a linearly decreasing function
of the number of negative ratings in his pro�le.)

(b) the expected auction revenue is a linearly decreasing function of the current number of
negative ratings in the seller's pro�le and given by

G(x) = (1− α)w2 − x(1− δ +
δ

N
)

c

δ(β̃ − ã)

(c) the seller's payo� is a function of seller's initial pro�le state and equal to

V (x0, s) =
1

1− δ

[
(1− α)w2 − c− ãc

β̃ − ã

]
− x0

c

δ(β̃ − ã)

3. The above payo�s constitute an upper bound on the payo�s attainable in any sequential
equilibrium of the game; the seller, therefore, cannot improve his payo�s by considering non-
stationary strategies.

Proof: See appendix.
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For α < 0.5 < β, from (9) and (10) it is easy to see that, forε > 0, α̃ > α, β̃ < β and β̃− α̃ < β−α.
Proposition 4.1 then states that, consistent with intuition, quality misreporting reduces the resulting
e�ciency of the system and raises the thresholdρ, above which the most e�cient equilibrium obtains.
It is also fairly easy to see that the equivalent of Proposition 3.2 holds in this case as well. Therefore,
even in the presence of occasional misreporting, binary feedback mechanisms are as e�cient as
mechanisms that publish the entire history of past feedback.

4.2 Incomplete reporting

Reputation mechanisms rely on voluntary feedback submission. Since this incurs a (small) cost
associated with connecting to a website and �lling the necessary feedback forms, in the absence of
concrete incentives a fraction of buyers might submit no report to the system10. Although, as I
mentioned in Section 3.1, such incentive schemes are not di�cult to construct, in this section I ex-
amine the impact of incomplete reporting on the equilibria induced by binary feedback mechanisms.
This analysis applies to environments where incentive schemes are currently absent (such as eBay)
or where, despite the existence of incentive schemes, there might be irrational buyers who forget or
dislike to leave feedback.

The possibility of incomplete feedback introduces the need for a policy regarding the treatment of
missing feedback. There are three possible options:

• Policy 1: Treat missing feedback as positive feedback.

• Policy 2: Treat missing feedback as negative feedback.

• Policy 3: Ignore missing feedback (do not update feedback pro�le.)

The following proposition compares the above policies in terms of the maximum seller payo�s achiev-
able under each of them.

Proposition 4.2: Let η+, η− denote the fractions of buyers who submit (truthful) ratings to the
system when they observe good or bad quality respectively. These fractions are determined exoge-
nously. Assume that the remaining buyers submit no rating. Furthermore, letV ∗

1 , V ∗
2 and V ∗

3 be
the maximum seller payo�s attainable through a binary feedback mechanism under Policies 1, 2 and
3 respectively. The following statements are true:

10eBay, for example, does not currently provide concrete incentives for feedback submission. According to recent
empirical evidence, about 50% of all eBay transactions receive no ratings (Resnick and Zeckhauser, 2002.)
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1. For �xed 0 ≤ η+, η− ≤ 1, V ∗
1 ≥ V ∗

2 . Equality holds if and only if η+ = 1.

2. For �xed 0 ≤ η+, η− ≤ 1, V ∗
1 ≥ V ∗

3 . Equality holds if and only if η+ = η−.

3. Under Policy 1, if ρ >
(

1
η−

)
[δ + N(1− δ)] /δ(β−α)2 the seller's maximum discounted lifetime

payo� is equal to

V (x0, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − a

]
− x0

(
1
η−

)
c

δ(β − a)

Proof: See Appendix.

Proposition 4.2 shows that the most e�cient policy regarding missing ratings is Policy 1, that is, a
policy of treating missing feedback as positive feedback (�no news is good news�.) Policy 2 is strictly
less e�cient that Policy 1 if there is incomplete reporting of positive outcomes (η+ < 1). Policy 3 is
equivalent to Policy 1 in the special case whereη+ = η− but less e�cient otherwise.

Under a �no news is good news� policy, incomplete reporting impacts the minimumρ required in
order for binary feedback mechanisms to induce the most e�cient equilibrium (it gets multiplied
by the factor 1/η− > 1) and therefore restricts their applicability to environments with high pro�t
margins. Perhaps surprisingly, however, ifρ is high enough, incomplete reporting doesnot lower the
maximum seller payo� (attainable for x0 = 0).

The results of this section underline the importance of careful design in optimizing the e�ciency of
online feedback mechanisms. It is interesting to note that eBay's feedback forum currently follows
Policy 3: eBay feedback pro�les only show information about transactions for which feedback was
provided; the remaining transactions are ignored. Proposition 4.2 shows that eBay can increase
the e�ciency of its mechanism by replacing that policy with a �no news is good news policy�: if
no feedback is submitted for a transaction within a speci�ed period, by default award the seller a
positive rating for that transaction.

4.3 Easy name changes

In most online communities it is relatively easy for members to disappear from the community and
re-register under a di�erent online identity. Friedman and Resnick (2001) refer to this property
as �cheap pseudonyms�. This property hinders the e�ectiveness of feedback mechanisms: online
community members can build a reputation, milk it by cheating other members and then disappear
and re-enter the community with a new identity and a clean record.
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In our model, the ability to costlessly change one's identity has a simple but disruptive e�ect: rational
sellers will disappear and re-enter the community with a new identity whenever their feedback pro�le
transitions to a state whose (lifetime discounted) payo� is lower than that corresponding to the initial
state of a new seller. This has particularly severe consequences if the initial state isx0 = 0 (i.e.
newcomers start with a �clean record�): sellers will then be tempted to disappear as soon as they
receive a single negative rating. This gives them no incentive to avoid negative ratings. Therefore,
sellers will always cheat, buyers will expect them to do so, and the equilibrium outcome would
correspond to Case 1 of Proposition 3.1 (no cooperation) independently of the value ofρ.

The fact that, in online settings, the mechanism designer can control the initial state of the feedback
pro�le of newcomers suggests a solution to the problem of easy name changes: In order for the
mechanism to prevent sellers from changing their identity, it su�ces to set the initial state of a
new seller's feedback pro�le so that it corresponds to the state with the lowest possible payo�.
The seller would then never �nd it optimal to disappear and re-enter under a new identity. In
the setting of this paper, by Proposition 3.1 this means that new sellers must start the game with
pro�les corresponding to the �worst� possible reputation (x0 = N) and must then slowly �build�
their reputation by transitioning to states with fewer negative ratings.

Although e�ective in addressing the adverse consequences of easy name changes, this solution lowers
the seller payo�s induced by the mechanism. In settings where players cannot change their identities
the socially optimal policy is to start new sellers with a �clean� feedback pro�le (x0 = 0), resulting
in payo�

V (0, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]

If easy name changes are a concern, new sellers start atx0 = N . This lowers their payo� to

V (N, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]
−N

c

δ(β − α)

The possibility of easy name changes thus forces a community to shift from an optimistic (and more
e�cient) policy to a more cautious (and less e�cient) policy where newcomers have to �pay their
dues� (see Friedman and Resnick (2001) for a similar result in the context of a repeated prisoner's
dilemma game.)
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It is interesting to note that the loss associated with preventing easy name changes is minimized
when N = 1, x0 = 1. This result is remarkable. In Section 3.3 I showed that the maximum e�ciency
attainable through binary feedback mechanisms is independent of the size of the parameterN and,
therefore, a mechanism that simply publishes a seller's single most recent rating is as e�cient as
mechanisms that summarize larger numbers of recent ratings. In environments where players can
costlessly change their identities, the result becomes even stronger: binary feedback mechanisms that
publish the single most recent rating are strictly more e�cient than mechanisms that summarize
larger numbers of ratings. This is yet another unexpected result that supports the �simpler is better�
principle of online feedback mechanisms.

I conclude this section by showing that, in the presence of easy name changes, no mechanism that
publishes a seller's entire feedback history (or any truncation thereof) can perform better than a
binary feedback mechanism with parametersN = 1, x0 = 1. E�ciency losses associated with easy
name changes are thus inevitable and a binary feedback mechanism withN = 1, x0 = 1 constitutes
the best possible solution.

Proposition 4.3: If ρ > [δ+N(1−δ)]/δ(β−α)2 and players can costlessly change identities, the set
of sequential equilibrium seller payo�s of a repeated game with the stage game structure described
in Table 1 and where the entire public history of buyer reports is available to short-run players is
bounded above by

V (1, s∗) =
1

1− δ

[
(1− α)w2 − c− αc

β − α

]
− c

δ(β − α)
.

Proof: See appendix.

5 Relationship to empirical �ndings

This section illustrates how the predictions of my theoretical model apply to online trading envi-
ronments, such as eBay. I �nd remarkable consistency between theory and empirically observed
outcomes and o�er theory-backed explanations to hitherto poorly understood phenomena, such as
the surprisingly low fraction of negative feedback on eBay.

A number of recent empirical studies have looked at various aspects of eBay's feedback mechanism
(see Dellarocas, 2003; Resnick, Zeckhauser, Swanson and Lockwood, 2002 for surveys.) Although
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Figure 3: Maximum e�ciency (relative to �rst-best case) induced by binary feedback mechanisms as
a function of ρ, the ratio of buyer valuation of high quality to seller cost of high e�ort (α = 1− β =
0.01.)

many of the results of these studies are mutually inconsistent, one particularly striking fact seems to
stand out from the majority of them: the amount of negative feedback submitted to eBay's feedback
mechanism is surprisingly low.

For example, Resnick and Zeckhauser (2002) report that, based on a data set of 36,233 randomly
chosen completed eBay transactions, less than 1% of ratings submitted by buyers are negative or
neutral. They speculate that part of the reason for this phenomenon is that, fearing retaliation
from sellers, many dissatis�ed buyers are reluctant to provide negative feedback. Miller, Resnick
and Zeckhauser (2002) treat this overwhelmingly positive feedback as evidence of poor functioning
of eBay's �primitive� mechanism and comment that �that such a high proportion of assessments are
positive suggests that little information is conveyed�. Our theory-driven analysis suggests another
explanation for the very low fraction of negative feedback on eBay: quite simply, in the two-outcome
settings studied in this paper, this �primitive� mechanism happens to be so e�ective that, at equi-
librium, it induces very high levels of cooperation. Therefore, the amount of negative feedback is
expected to be very low simply because, thanks to the mechanism, the fraction of dissatis�ed buyers
is expected to be low as well11.

11The �fear of retaliation� hypothesis should not be ruled out, of course. An interesting extension of this paper
would be to allow both players to rate one another and explore what strategic side e�ects are introduced by this new
mechanism dimension.
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Figure 4: Equilibrium outcomes induced by binary feedback mechamisms in online auction environ-
ments with parameters N = 30, α = 1− β = 0.01, η+ = η− = 0.5, δ = 0.999 and ρ = 2.15

On environments like eBay the probability of a �low quality� outcome if the seller cooperates (i.e.
promptly ships back goods of promised quality after receiving payment from buyer) is arguably
quite low and corresponds to relatively improbable circumstances where goods are damaged or lost
in the mail, the buyer misunderstood the seller's description or made a mistake when rating, etc.
Therefore, I argue that on online trading environments a reasonable value forα would be 0.01 or
less. The probability of a �high quality� outcome if a seller cheats is similarly very low. Assume that
α = 1− β = 0.01. Then, from Proposition 3.1, for sellers with frequent trades (δ ≈ 1) the threshold
required in order for the feedback mechanism to induce the most e�cient equilibrium is a reasonable
ρ ≥ 1.04. This value corresponds to the requirement that the second highest bidder's valuation of
high quality is more than 4% higher than the cost of high e�ort to the seller, a condition that is
arguably satis�ed by the vast majority of items sold through such environments.

Figure 3 plots the maximum relative e�ciencyV (0, s∗)/Vfirst−best induced by binary feedback mech-
anisms for the above values ofα and β as a function of ρ. We see that, for ρ > 1.22, relative e�ciency
is higher than 95% and for ρ > 2.04 it becomes higher than 99%.

Resnick and Zeckhauser report that, on their data set, roughly 50% of transactions received no rating
from buyers. Although their data provides no basis for distinguishing what fractions of the unrated
transactions would have received what type of rating, let us make the conservative assumption
η+ = η− = 0.5. Figure 4 depicts the probabilities of cooperation s(x) and stationary probabilities
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Figure 5: Expected fraction of negative feedback at equilibrium induced by binary feedback mecha-
nisms under incomplete reporting (η+ = η− = 0.5) as a function of the noise parameterα (β = 1−α)

of having x negative ratings for sellers that behave according to the optimal strategy described by
Proposition 4.1 in an environment whereα = 1− β = 0.01, η+ = η− = 0.5, ρ = 2.15 and N = 3012.
We see that the model predicts high levels of cooperation and low probabilities of being in states
with many negative ratings (the probability of having zero negative ratings is 81%, the probability
of having more than 2 negative ratings is less than 1%.)

The probability of receipt of a negative rating during a period where the seller's pro�le hasx negatives
is equal to s(x)α̃ + [1 − s(x)]β̃. The average probability of a negative rating (or equivalently,
the expected fraction of negative ratings in a large sample of ratings) is therefore equal top =
∑N

x=0 p(x)
[
s(x)α̃ + [1− s(x)]β̃

]
, where p(x) are the stationary probabilities that a seller will have

x negative ratings in his pro�le at the beginning of a period. Figure 5 plots the expected fraction of
negative ratings as a function ofα (under the assumption that β = 1−α and η+ = η− = 0.5) for the
minimum ρ required by Case 2 of Proposition 4.1 in order for the most e�cient equilibrium to obtain
(higher values of ρ result in even lower fractions of negative feedback.) We see that, forα = 0.01
only 0.98% of feedback is expected to be negative. These results are consistent with the empirical
observations of eBay's feedback mechanism and provide arguments, not only for the validity of the
model presented in this paper, but also for the e�ectiveness of eBay's �primitive� (according to some
authors) feedback mechanism.

12From Proposition 4.2, for η+ = η−, the most e�cient equilibrium induced by eBay's current policy regarding
missing feedback (Policy 3) is identical to the most e�cient equilibrium induced by a �no news is good news policy�
(Policy 1.) From the proof of Proposition 4.2, under such a policy,α̃ = η−α = 0.005, β̃ = η−β = 0.495.
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6 Concluding Remarks

This paper presented a theoretical analysis of the impact of feedback mechanisms in trading envi-
ronments with opportunistic sellers, imperfect monitoring of a seller's e�ort level, and two possible
outcomes (corresponding to �high� and �low� quality respectively), one of which has no value to
buyers. On a more abstract level, the paper provides a stylized exploration of online feedback mech-
anism design issues in online retail environments. The analysis highlights the new design possibilities
o�ered by automated feedback mediators and the importance of carefully considering and �ne-tuning
the parameters that these new systems make available to community operators.

On a practical level, the results of this paper have important implications for online auction market-
places, such as eBay, as well as for other online communities that use similar feedback mechanisms.

• First, they establish that, if buyer valuations of high quality are su�ciently high (relative
to the cost of high e�ort), relatively �primitive� feedback mechanisms similar to eBay's �ID
Card� are capable of inducing high average levels of cooperation that remain stable over time.
Furthermore, the buyer and seller strategies that maximize cooperation have a particularly
simple stationary form. Surprisingly, e�ciency cannot be improved by summarizing more
ratings or by publishing detailed seller feedback histories.

• Second, they provide theoretical arguments that show that the remarkably low fraction of
negative feedback on eBay arises naturally from equilibrium behavior and is not, as some
authors previously speculated, an indication of the mechanism's poor functioning.

• Third, they suggest ways in which eBay's current mechanism can be improved. More specif-
ically, to prevent members from changing their identities following bad ratings, eBay might
want to consider starting all new members with a pro�le that already contains a number
of negative ratings. Furthermore, in the presence of incomplete feedback submission, eBay
can increase the e�ciency induced by its mechanism by replacing its current policy regarding
unrated transactions with the more e�cient �no news is good news� policy.

As stated in the Introduction, this work is part of a larger research program whose objective is
to identify �good� online feedback mechanism architectures for a variety of practically important
settings. The results of this paper can be extended in a number of important directions:
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• First, this paper studies a setting where there are only two seller e�ort levels and two stage
game outcomes (quality levels.) An interesting open question is how the results of this paper
extend to environments where multiple e�ort levels and/or outcomes are possible.

• Second, the analysis of this paper assumes that seller costs and conditional probabilities of
outcomes given e�ort are known to buyers. In some online environments it is plausible that
there might be di�erent seller types with di�erent cost structures and/or conditional proba-
bilities of outcomes, unknown to buyers. For example, in online marketplaces for professional
services, such as eLance.com, professionals of varying (and privately known) abilities advertise
their services. In such settings, in addition to the elicitation of �good conduct�, an important
objective of feedback mechanisms is to help buyers learn something about the unknown prop-
erties (type) of the seller they are facing. It is therefore interesting to explore how the models
of this paper extend to environments with adverse selection.

• Third, although reasonably e�cient, in environments with noisy monitoring of quality, binary
feedback mechanisms incur e�ciency losses relative to the �rst-best case. This paper has
shown that these e�ciency losses cannot be improved by following the �obvious� paths of
summarizing more ratings or publishing the entire feedback history. Nevertheless, it has not
ruled out the existence of more e�cient mechanisms that are based on di�erent ideas. Inventing
such mechanisms (or proving that they do not exist) is an endeavor of both theoretical and
practical importance.
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Appendix

Proof of Proposition 3.1

In order for a stationary strategy s∗ to be an equilibrium, it must satisfy the incentive compatibility
constraints (8.) From (2), (7) and (8) it follows that:

s∗(x) = 0 ⇒ Ucoop(x, s∗) ≤ Ucheat(x, s∗)
0 < s∗(x) ≤ 1 ⇒ Ucoop(x, s∗) ≥ Ucheat(x, s∗)

(11)
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and

V (x, s∗) = G(x, s∗) + U(x, s∗) =

{
(1− β)w2 + Ucheat(x, s∗) if s∗(x) = 0
G(x, s∗) + Ucoop(x, s∗) if 0 < s∗(x) ≤ 1

(12)

Substituting (5) and (6) into (11) and (12), the above set of constraints can be rewritten as:

s∗(x) = 0 ⇒ (1− x
N )[V (x, s∗)− V (x + 1, s∗)] + x

N [V (x− 1, s∗)− V (x, s∗)] ≤ c
δ(β−α)

0 < s∗(x) ≤ 1 ⇒ (1− x
N )[V (x, s∗)− V (x + 1, s∗)] + x

N [V (x− 1, s∗)− V (x, s∗)] ≥ c
δ(β−α)

(13)

and

V (x, s∗) =





(1− β)w2 + δ[β(1− x
N )V (x + 1, s∗) + [β x

N + (1− β)(1− x
N )]V (x, s∗)

+(1− β) x
N V (x− 1, s∗)] if s∗(x) = 0

G(x, s∗)− c + δ[α(1− x
N )V (x + 1, s∗) + [α x

N + (1− α)(1− x
N )]V (x, s∗)

+(1− α) x
N V (x− 1, s∗)] if 0 < s∗(x) ≤ 1

(14)

I will show that the equilibrium strategy s∗ that maximizes seller payo�s depends on the ratio
ρ = w2/c; ρ provides a measure for the ratio of the valuation of a high quality good to the cost of
high e�ort.

The proof is organized as follows: First I establish an upper bound on seller payo�s attainable in
any sequential equilibrium of a modi�ed game that includes all stationary equilibria of the original
game. Then, I show that there exists a simple stationary equilibrium of the original game that
attains payo�s equal to this upper bound. Together, the two results prove Proposition 3.1.

Consider a repeated game where the stage game structure is identical to that of Table 1 but where,
instead of the statisticx, the mechanism publishes the entire history of past ratings plus the sequence
of random numbers based on which it would have updated the statisticx at the end of each period
(see Section 2.2.) It is easy to see that any stationary equilibrium of the original game is also an
equilibrium of the modi�ed game (because the information structure of the modi�ed game allows all
players to unambiguously compute x at each period and condition their play on thatx only.) The
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proof of this and several subsequent propositions of this paper are based on the following important
lemma.

Lemma 1. The set of sequential equilibrium seller payo�s of a repeated game with the information
structure described above and with the stage game structure described in Table 1 is bounded above
by

V ∗ =





(1−β)w2

1−δ if ρ < β/(β − α)2
1

1−δ

[
(1− α)w2 − c− αc

β−α

]
if ρ ≥ β/(β − α)2

Proof: In their 1994 paper, Fudenberg and Levine introduced an algorithm (known as themaximal
score method) for computing the limiting set of payo�s of perfect public equilibria13 of games with
long-run and short-run players. One class of games for which the maximal score method acquires
a particularly simple form are games with a product structure. Such games have the property that
there is a separate public signal for each long-run player, which is independent of the signal for other
long-run players and depends only on his own play and that of the short-run players. According to
this de�nition, all games with a single long-run player have a product structure.

Consider a game with a single long-run player and n short-run players. Denote by A the long-
run player's pure action set, ∆A the corresponding space of mixed actions, S the set of (publicly
observable) stage-game outcomes andB : ∆A → ∆A1× ...×∆An the correspondence that maps any
mixed action pro�le for the long run player to the corresponding static equilibria for the short-run
players. Furthermore, let h(a, αSR) denote the long-run player's stage-game payo� andp(s|a, αSR)
denote the probability that the stage-game outcome will bes ∈ S if the long-run player plays a ∈ A

and the short run players play a mixed actionαSR ∈ B(α) for some α ∈ ∆A. Let Π(αSR) be the
matrix with rows corresponding to actionsa, columns to outcomes s and with the (a, s) component
equal to p(s|a, αSR). If a game has a product structure and, in addition, has the property that
Π(αSR) has full row rank (i.e. rank equal to the number of the long-run player's actions), then
Fudenberg and Levine show that the maximum long-run player payo�v is the solution of the following
linear programming problem:

13According to Fudenberg and Levine (1994) a strategy for long-run playeri is public if at each time t, it depends
only on the public information and not on the private information of that player. A perfect public equilibrium is a
pro�le of public strategies such that at every date t and for every public history the strategies are a Nash equilibrium
from that date on.
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maxα∈∆A,w(s)∈R v subject to

v = h(a, αSR) + δ
∑
s∈S

p(s|a, αSR)w(s) for a ∈ A such that α(a) > 0

v ≥ h(a, αSR) + δ
∑
s∈S

p(s|a, αSR)w(s) for a ∈ A such that α(a) = 0

v ≥ w(s) for s ∈ S

If, in addition, short-run player actions are observable, Theorem 5.2 of the same paper asserts that
the set of sequential equilibrium payo�s is the same as the set of perfect public equilibrium payo�s.

Under the assumption that, at the end of each period, the mechanism publishes both the rating
posted by the buyer for the seller as well as a random number between 1 andN , the moral hazard
game of Section 2 has A = {H,L} (high e�ort, low e�ort), S = {(+, r), (−, r)}, r ∈ {1, 2, ..., N} and
mixed seller actions characterized by a probabilitys ∈ [0, 1] of playing H. The corresponding static
best response of the short-run buyers is to bid amounts equal toGi = (s(β−α)+1−β)wi. This results
in stage-game seller payo�sh(H, αSR) = (s(β−α)+1−β)w2−c and h(L,αSR) = (s(β−α)+1−β)w2.
Finally,

Π(αSR) =

[
p[(+, 1)|H, αSR] ... p[(+, N)|H, αSR] p[(−, 1)|H,αSR] ... p[(−, N)|H, αSR]
p[(+, 1)|L,αSR] ... p[(+, N)|L,αSR] p[(−, 1)|L,αSR] ... p[(−, N)|L,αSR]

]

=

[
(1− α)/N ... (1− α)/N α/N ... α/N

(1− β)/N ... (1− β)/N β/N ... β/N

]

The above stage game satis�es the full row rank condition (sinceRankΠ(αSR) = 2) and has ob-
servable short-run player actions. According to the above, the maximum long-run player sequential
equilibrium payo� v is the solution of the following linear programming problem:

maxs∈[0,1],w(+,r),w(−,r) v subject to

v = (s(β − α) + 1− β)w2 − c + δ[(1− α)
∑N

r=1 w(+, r) + α
∑N

r=1 w(−, r)]/N for a = H and s > 0
v ≥ (s(β − α) + 1− β)w2 − c + δ[(1− α)

∑N
r=1 w(+, r) + α

∑N
r=1 w(−, r)]/N for a = H and s = 0

v = (s(β − α) + 1− β)w2 + δ[(1− β)
∑N

r=1 w(+, r) + β
∑N

r=1 w(−, r)]/N for a = L and s > 0
v ≥ (s(β − α) + 1− β)w2 + δ[(1− β)

∑N
r=1 w(+, r) + β

∑N
r=1 w(−, r)]/N for a = L and s = 1

v ≥ w(+, r), v ≥ w(−, r) for all r = 1, ..., N
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For ρ < β/(β − α)2 the above problem has solution:

v = (1−β)w2

1−δ

s = 0
w(+, r) = v for all r = 1, ..., N

w(−, r) = v for all r = 1, ..., N

whereas for ρ ≥ β/(β − α)2 the solution becomes:

v = 1
1−δ

[
(1− α)w2 − c− αc

β−α

]

s = 1
w(+, r) = v for all r = 1, ..., N

w(−, r) = v − c
δ(β−α) for all r = 1, ..., N

This completes the proof or Lemma 1. We can now continue with the proof of Proposition 3.1.

Case 1: ρ < β/(β − α)2

From (2), (3) it is easy to see that the strategys∗ = [s(x) = 0, x = 0, ..., N ] induces expected auction
revenue G(x, s∗) = (1− β)w2, seller per-period payo� hs(x, s∗) = G(x, s) = (1− β)w2 and expected
lifetime payo� V (x, s∗) = (1− β)w2/(1− δ).

Since Ucoop(x, s∗) = −c + δ(1− β)w2/(1− δ), Ucheat(x, s∗) = δ(1− β)w2/(1− δ) and Ucoop(x, s∗) <

Ucheat(x, s∗) for all x = 0, ..., N , strategy s∗ satis�es the incentive compatibility constraints (11) and
is, therefore, an equilibrium strategy. Furthermore, according to Lemma 1, no other equilibrium
strategy (stationary or non-stationary) can attain higher payo�s.

Case 2: ρ > [δ + N(1− δ)] /δ(β − α)2 > β/(β − α)2

I will derive the optimal strategys∗ from among the subset of stationary equilibrium strategies where
0 < s∗(x) ≤ 1 for all x = 0, ..., N and will show that it induces payo�s equal to the upper bound
established by Lemma 1. From Lemma 1, it follows that no other equilibrium strategy, stationary
or otherwise, can induce higher payo�s.

Let s∗ = [0 < s∗(x) ≤ 1, x = 0, ..., N ]. Since 0 < s∗(0) ≤ 1, from (14) it must be:
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V (0, s∗) = G(0, s∗)− c + δ[αV (1, s∗) + (1− α)V (0, s∗)] (15)

where G(0, s∗) = [s∗(0)(β − α) + (1− β)]w2. Furthermore, from (13) it must be:

V (0, s∗)− V (1, s∗) ≥ c
δ(β−α) (16)

It is easy to see that the maximum values of V (0, s∗) and V (1, s∗) that satisfy (15) and (16) are
attained when s∗(0) = 1. More speci�cally:

s∗(0) = 1
G(0, s∗) = (1− α)w2

V (0, s∗) = 1
1−δ

(
[(1− α)w2 − c]− αc

β−α

)

V (1, s∗) = V (0, s∗)− c
δ(β−α)

x = 0, ..., N (17)

Having calculated V (0, s∗), V (1, s∗), it is fairly straightforward to obtain s∗(x), G(x, s∗), V (x, s∗) for
higher x by induction. The key hypothesis is that, for allx = 1, ..., N

V (x, s∗) = V (x− 1, s∗)− c
δ(β−α) (18)

which, by (17), is satis�ed for x = 1. For 1 ≤ x < N and 0 < s∗(x) ≤ 1, (18) and (13) then imply
that the maximum value of V (x + 1, s∗) is equal to:

V (x + 1, s∗) = V (x, s∗)− c
δ(β−α) (19)

This veri�es the induction hypothesis. Combining (17) and (19) gives:

V (x, s∗) = V (0, s∗)− x c
δ(β−α) = 1

1−δ

(
[(1− α)w2 − c]− αc

β−α

)
− x c

δ(β−α) (20)

Substituting (20) into (14) and solving for s∗(x), G(x, s∗) gives:

33



s∗(x) = 1− x(1− δ + δ
N ) c/w2

δ(β−α)2

G(x, s∗) = (1− α)w2 − x(1− δ + δ
N ) c

δ(β−α)

for 0 ≤ x ≤ N (21)

Since we have assumed that s∗(x) > 0 for all x = 0, ..., N , strategy s∗ requires that 1 − x(1 − δ +
δ
N ) c/w2

δ(ρ−π)2
> 0 for all x = 0, ..., N . This implies ρ > [δ + N(1− δ)] /δ(β − α)2, which is consistent

with our hypothesis.

Proof of Proposition 3.2

This proposition is a simple corollary of Lemma 1. All sequential equilibria of a game where the
entire history of past ratings is public information are also equilibria of the modi�ed game analyzed
in Lemma 1 (the information structure of the game of Lemma 1 includes all past ratings plus
the random numbers used by the mechanism to update the statistic x; all equilibria of the game of
Proposition 3.2 are, thus, equilibria of the game of Lemma 1 where players simply ignore the random
numbers.)

Proof of Proposition 4.1

The proof is identical to that of Proposition 3.1 with the only di�erence that the seller's expected
future payo� now becomes:

Ucoop(x, s) = −c + δ[α̃(1− x

N
)V (x + 1, s) + [α̃

x

N
+ (1− α̃)(1− x

N
)]V (x, s) + (1− α̃)

x

N
V (x− 1, s)]

if the seller cooperates and

Ucheat(x, s) = δ[β̃(1− x

N
)V (x + 1, s) + [β̃

x

N
+ (1− β̃)(1− x

N
)]V (x, s) + (1− β̃)

x

N
V (x− 1, s)]

if the seller cheats. In the above equationsV (x, s) = G(x, s) + U(x, s), where

G(x, s) = [s(x)(β − α) + (1− β)]w2
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Proof of Proposition 4.2

Under the assumption that submitted feedback is truthful feedback, under Policy 1 the value ofη+

becomes irrelevant and the conditional probabilities of a negative rating becomeα̃ = η−α, β̃ = η−β.

The properties of the optimal seller strategy can be obtained by simple substitution of the above
values of α̃, β̃ in Proposition 4.1. More speci�cally, the minimumρ required in order for the most e�-
cient equilibrium (Case 2) to obtain is given byρ >

(
1

η−

)
[δ+N(1−δ)]/δ(β−α)2. The corresponding

seller payo�s are then equal to

V1(x0, s∗) =
1

1− δ

[
(1− α)w2 − c− ac

β − a

]
− x0

(
1
η−

)
c

δ(β − a)

These payo�s are maximized for x0 = 0. Therefore, V ∗
1 = V1(0, s∗).

Under Policy 2, the corresponding conditional probabilities of a negative rating areα̃ = 1−η+(1−α),
β̃ = 1− η+(1− β).

By substitution of the above values of α̃, β̃ in Proposition 4.1, the minimum ρ required in order
for the most e�cient equilibrium to obtain is given by ρ >

(
1

η+

)
[δ + N(1 − δ)]/δ(β − α)2. The

corresponding seller payo�s are then equal to

V2(x0, s) =
1

1− δ

[
(1− α)w2 − c−

(
1
η+

− 1 + α

)
c

β − a

]
− x0

(
1
η+

)
c

δ(β − a)

These payo�s are maximized for x0 = 0. Therefore, V ∗
2 = V2(0, s).

It is easy to see that V ∗
1 ≥ V ∗

2 with equality if and only if η+ = 1.

The modeling of Policy 3 is more complicated. The basic observation underlying this policy is that,
if no rating is posted for a seller in the current period then his feedback pro�le will remain unchanged
in the next period. The conditional probabilities of a rating are

p(+|H) = η+(1− α) p(−|H) = η−α

p(+|L) = η+(1− β) p(−|L) = η+β

This gives:
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Ucoop(x, s) = −c + δ[p(−|H)(1− x

N
)V (x + 1, s) + [1− p(−|H)(1− x

N
)− p(+|H)

x

N
]V (x, s)

+p(+|H)
x

N
V (x− 1, s)]

Ucheat(x, s) = δ[p(−|L)(1− x

N
)V (x + 1, s) + [1− p(−|L)(1− x

N
)− p(+|L)

x

N
]V (x, s)

+p(+|L)
x

N
V (x− 1, s)]

In the special case where η+ = η− = η, by following a procedure identical to that of the proof of
Proposition 3.1 we �nd that for ρ >

(
1

η−

)
[δ + N(1− δ)]/δ(β − α)2 the maximum seller payo�s are

identical to those of Policy 1.

The exact expression for the payo�s in the general case whereη+ 6= η− is di�cult to derive. Instead,
we will show that V ∗

3 < V ∗
1 using a two step procedure:

• Step 1: Show that V ∗
3 ≤ V ∗

1

• Step 2: Show that, under Policy 3, if η+ 6= η− there cannot be an equilibrium with payo�s
equal to V ∗

1 .

Step 1: Consider the moral hazard game of Section 2 augmented with a mechanism that, following
each stage game, publishes a public signal taking values from a setR = {+,−, 0} where �+�, �-�
indicate the submission of a positive or negative rating and 0 indicates the absence of any rating.
In addition, the mechanism publishes the sequence of random numbers based on which it would
have updated the statistic x at the end of each period (see Section 2.2.) It is easy to see that any
stationary equilibrium of the original game under any policy regarding missing feedback is also an
equilibrium of the modi�ed game (because, given the information structure of the modi�ed game
plus a policy regarding missing ratings, all players can unambiguously computex at each period and
therefore condition their play on that x only.) Through the use of the maximal score method on
this setup, it follows that, for ρ ≥ β/(β − α)2, the payo�s attainable in any sequential equilibrium
of the modi�ed game are bounded above by

1
1− δ

[
(1− α)w2 − c− ac

β − a

]
= V ∗

1

Therefore, V ∗
3 ≤ V ∗

1
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Step 2: Let ∆(x) = V (x−1)−V (x). A stationary equilibrium strategy of the repeated game studied
in this paper de�nes (a) a set ofN + 1 parameters s(0), ..., s(N) and (b) an additional set of N + 1
parameters V (0), V (1), ..., V (N) or, equivalently, V (0),∆(1), ...,∆(N). These 2N + 2 parameters
are a solution of a system of 2N + 2 constraints that includes (i)N + 1 incentive compatibility (IC)
constraints (11) for x = 0, ..., N and (ii) N + 1 Bellman equations (12), again for x = 0, ..., N .

I de�ne the rank of a set of constraints as the number of linearly independent constraints. It is
easy to see that, if η+ = η− the N + 1 IC constraints have rank N (i.e. any one of them can be
expressed as a linear combination of the otherN) whereas if η+ 6= η− they are linearly independent.
The Bellman equations are also linearly independent. Therefore, forη+ 6= η− the total system of
constraints has rank 2N + 2.

Assume that, under Policy 3 and for η+ 6= η− there exists an equilibrium strategy s∗ with payo�
V3(0, s∗) = V ∗

1 . Following a procedure identical to the Proof of Proposition 3.1 (Case 2) we know
that such an equilibrium must also have s(0) = 1 and ∆(1) = V (0)− V (1) = c/η−δ(β − α). These
requirements satisfy one IC constraint and one Bellman equation (both forx = 0.) We are, therefore,
left with a system of 2N linearly independent constraints and2N−1 unspeci�ed parameters. This is
obviously an over-speci�ed system that has no solution. Our assumption that there exists a strategy
with payo� V3(0, s∗) = V ∗

1 has lead to a contradiction.

Since, from Step 1 it must be V3(0, s∗) ≤ V ∗
1 whereas from Step 2 it follows that there is no

equilibrium strategy with payo�sV3(0, s∗) = V ∗
1 , I have proven that, under Policy 3 and forη+ 6= η−,

any stationary equilibrium strategy induces payo�sV3(0, s∗) < V ∗
1 .

Proof of Proposition 4.3

The proof is similar to the proof of Lemma 1 and makes use of Fudenberg and Levine's maximal
score method. The basic di�erence is that the assumption of costless identity changes requires that
the payo�s of intermediate states of the game are at least as high as the payo�s of the initial state
(otherwise, whenever players are faced with the prospect of entering such states, they will simply
disappear and restart the game under a di�erent identity.) The constraintv ≥ w(s) for s ∈ S of the
linear programming problem of Lemma 1 must thus be replaced with the constraintv ≤ w(s) for
s ∈ S.
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