
Lecture 16

Submodular Functions and Network Coding

Nov 22, 2004
Lecturer: Kamal Jain

Notes: Atri Rudra

In the last lecture we looked at submodular function minimization. We will present a recent result on
submodular functions in this lecture and then move onto the question if the max flow min cut theorem still
holds when the number of receivers are not all the nodes (which was same as arborescence packing) or just
one node (which was same as max flow).

16.1 Submodular function minimization

In this section, we look at the question of giving an NP certificate for a subset S which supposedly minimizes
the submodular function f whose domain is 2U for some universe U . Note that giving a coNP certificate is
easy as one can obtain an optimal solution (using the zis as discussed in the last lecture).

The following result is from [1].

Lemma 16.1. For any permutation π of U , we have

xπ1
f({π1, · · · , πn})+(xπ2

−xπ1
)f({π2, · · · πn})+· · ·+(xπn

−xπn−1
)f({πn})+(1−xπn

)f({}) ≤ f(x1, · · · , xn)

The inequality is tight when π orders the xis in ascending order. For notational convenience we will refer to
the LHS of the inequality as Ef (π,x).

Proof. First notice that when π orders xis in increasing order then xπi
is the same as the zis defined for an

optimal solution for the problem in the last lecture. Thus, in this case the inequality is tight.

To complete the proof we consider a π that does not order the xis in ascending order. Thus, there exists
a j such that xπj

> xπj+1
. Define another permutation π′ such that π′

j = πj+1, π′

j+1 = πj and π′

i = πi for
i 6∈ {j, j + 1}. We will show that Ef (π′,x) > Ef (π,x) which with the discussion in the last paragraph
would complete the proof.

We will work with the quantity Ef (π′,x) − Ef (π,x). We have Ef (π′,x) − Ef (π,x) =

xπ′

j
f(

{

π′

j , π
′

j+1, πj+2, · · · , πn

}

) − xπ′

j
f(

{

π′

j+1, πj+2, · · · , πn

}

) + xπ′

j+1
f(

{

π′

j+1, πj+2, · · · , πn

}

) −

xπ′

j+1
f({πj+2, · · · , πn}) − [xπj

f({πj, πj+1, πj+2, · · · , πn}) − xπj
f({πj+1, πj+2, · · · , πn}) +

xπj+1
f({πj+1, πj+2, · · · , πn}) − xπj+1

f({πj+2, · · · , πn})]
= xπj+1

f({πj+1, πj , πj+2, · · · , πn}) − xπj+1
f({πj , πj+2, · · · , πn}) + xπj

f({πj, πj+2, · · · , πn}) −

1



xπj
f({πj+2, · · · , πn}) − [xπj

f({πj, πj+1, πj+2, · · · , πn}) − xπj
f({πj+1, πj+2, · · · , πn}) +

xπj+1
f({πj+1, πj+2, · · · , πn}) − xπj+1

f({πj+2, · · · , πn})]
= −(xπj

− xπj+1
)f({πj, πj+1, πj+2, · · · , πn}) + (xπj

− xπj+1
)f({πj, πj+2, · · · , πn}) + (xπj

−
xπj+1

)f({πj+1, πj+2, · · · , πn}) − (xπj
− xπj+1

)f({πj+2, · · · , πn})
= (xπj

− xπj+1
)[f({πj , πj+2, · · · , πn}) + f({πj+1, πj+2, · · · , πn}) − f({πj , πj+1, πj+2, · · · , πn}) −

f({πj+2, · · · , πn})].
The quantity in the first pair of parenthesis is positive by our assumption on π while the second term is
non-negative by the submodualrity of f . Thus, we have Ef (π′,x) > Ef (π,x) and we are done.

We can now express our LP for minimizing a submodular function f by

min b

subject to

∀π Ef (π,x) ≤ b

0 ≤ xi ≤ 1

If we now consider the dual of the above LP, then it has exponentially many variables and polynomially many
constraints which implies polynomially many variables would be non-zero in the optimal dual solution.
These non-zero variables constitute the NP certificate we were looking for.

16.2 Errata for last lecture

We give a much simpler argument than the one used in the last lecture to show that one can build abrores-
cences inductively. As a quick recap let G be the original graph and let A be the partially built arborescence
where we always maintain the relation C(G−A) ≥ C(G)− 1 where C(G) is the min cut of G. Further we
defined a critical set S ⊆ V (G) as one which satisfies the following three properties:

1. δG−A(S) = C(G) − 1,

2. The root is in S, and

3. There exists a w ∈ V (G) − V (A) such that w 6∈ S.

Let S′ be a maximal critical set. Define T = S ∪ V (A). Thus, by maximality of S ′ we have that
δG−A(T ) = C(G) and hence, there exists an edge e = (u, v) such that both u and v lie outside of V (A).
Now, if we could pick this e such that adding e to A does not affect any critical set then we are done. So
assume we have a critical set T ′ such that u ∈ T ′ and v 6∈ T ′: that is, removing e would affect the critical
set T ′. Now, by submodualrity of the δG−A(.) function, we have

δG−A(T ′) + δG−A(S′) ≥ δG−A(S′ ∩ T ′) + δG−A(S′ ∪ T ′). (16.1)

As both S′ and T ′ are critical sets, δG−A(T ′) = δG−A(S′) = C(G) − 1. Further, as we always maintain
C(G − A) ≥ C(G) − 1, we have δG−A(S′ ∩ T ′) ≥ C(G) − 1 and δG−A(S′ ∪ T ′) ≥ C(G) − 1. These
along with (16.1) implies that δG−A(S′ ∪T ′) = C(G)− 1, that is, S ′ ∪ T ′ is a critical set which contradicts
the maximality of S ′.

2



16.3 Network Coding

We have seen that when there is a single source and a single sink then max flow is the same as min cut. On
the other extreme when we have a single source and all other nodes in the graphs are sinks then again the
maximum flow (according to the arborescence packing) is same as the min cut. It is a natural question to
ask if this generalizes to the intermediate case: that is, when not every node other than the source is a sink.
Note that in this case we are taking about packing of Steiner trees and it is easy to convince yourself that
max flow in this case is upper bounded by the min cut. However, the other direction is not true. Consider
the example in Figure 16.1.

t1

s

t2

Figure 16.1: Example in Steiner packing where max flow is not the same as min cut. s is the source and t1

and t2 are the sinks.

It is easy to see that the graph in Figure 16.1 has minimum cut of two (two edge disjoint paths to t1 and
t2). However, one cannot pack more than one integral Steiner tree. If one is allowed to do fraction packing
then one can pack atmost 1.5 steiner trees. This latter fact can be proved using the dual but we’ll just give an
fractional packing of 1.5 here. Consider the Steiner trees in Figure 16.2. If we take each tree to the extent

Figure 16.2: Steiner Trees used in the fractional packing of the graph in figure 16.1.

of 1
2 , then we get a packing of 1.5.

Again consider the example in of Figure 16.1 as shown in Figure 16.3 (the example is due to [2]). At at
each time instance, two bits b1 and b2 originate at the source. If we do not do any computation on the edges
then c would be either b1 (or b2) in which case the only the second (first) sink gets both the bits. However,
if c = b1 ⊕ b2, then both the sinks can recover b1 and b2.

3



b1

b1

b1

b2

b2

b2c

c c

Figure 16.3: Same example as Figure 16.1 but with computation being done at the edges. For example
consider c = b1 ⊕ b2.

With the above motivating example, we will try to give a general framework where we can do computa-
tion on the edges. However, we will have to work over general field GF (q) instead of GF (2). So suppose
we have a digraph G one node of which is designated as source which has to transmit c GF (q) elements
at each time step to some receivers (or sinks). We also assume that there are c edge disjoint paths from the
source to each receiver (paths for different receivers may not be disjoint). Further the edges have a capacity
of log q bits, that is, they can transmit a GF (q) element at each time instance. One final assumption on the
graph is that it is acyclic. This is not a very strong assumption: any graph with cycles can be converted into
a larger acyclic graph by “unrolling” [2]. For the rest of this course we will assume that G is acyclic.

The original solution in [2], picks a random function from GF (q) to GF (q) to do computation on the
edges and they show that with exponentially small probability, each receiver can ’decode’ the original c

information symbols transmitted from the source. Thus, by a simple union bound, the probability that some
receiver fails to decode is still exponentially small.

We now outline a solution which specifies how to compute on each edge of the graph G so that if the
source s sends symbols b1, · · · , bc ∈ GF (q) every time unit then all the receivers r1, · · · , rt can decode
b1, · · · , bc from the symbols that they receive. The solution is basically solving an “algebraic program”.
For any two edges e and f in G such that e is an incoming edge and f is an outgoing edge for some node
in G, define a variable αef and let α be the vector of all such variables. Also let be be the symbol being
transmitted on edge e ∈ E(G). We will do a linear encoding at each edge. Let v ∈ V (G). Further,
let e1, · · · , em ∈ E(G) be the set of incoming edges of v and let f ∈ E(G) be an outgoing edge of v.
Then be =

∑m
i=1 αeif bei

. Now consider any receiver ri and wlog let ei
1, · · · , ei

c be the set of incoming
edges of ri. Given the linear combination that we do at each edge, it is easy to see that for 1 ≤ j ≤ c,
bei

j
=

∑c
k=1 P

j
k (α)bk where P

j
k is some polynomial over GF (q) in the variables of α. We now define a c×c

matrix M (i) such that M
(i)
jk = P

j
k (α). Thus, receiver ri can decode and obtain b1, · · · , bc if det(M (i)) 6= 0.

Note that det(M (i)) is equivalent to some polynomial P (i)(α). Thus, we finally want to solve the following
algebraic program

∀i ≤ i ≤ t, P (i)(α) 6= 0

If we choose q to be greater than the sum of degree of all P (i) for 1 ≤ i ≤ t, then the above algebraic
program is feasible if and only if

t
∏

i=1

P (i)(α) 6= 0

4



We now argue that it is always possible to find α such that P (i)(α) 6= 0 for some particular i: indeed α

as a feasible c-flow between the source and the receiver ri is one such solution. Finally, we use the second
formulation to derive one value of α that works for all receivers– good probabilistic algorithms for finding
non-roots of a polynomial over GF (q) are well known1.

In the scheme presented above, the size of q depends on the capacity of the network which can be pretty
bad. In the next lecture we will present a deterministic scheme where q = O(t).

References

[1] K. Jain, V. Vazirani, and Y. Ye. Market equilibria for homothetic, quasi-concave utilities and economics
of scale in production. In SODA 05, 2005. To Appear.

[2] R. Ahlswede, N. Kai, S. Y. R. Li, and R. Yeung Network Information Flow. In IEEE Trans. Inform.
Theory, IT-46: 1204-1216, 2000.

1In fact a random point in GF (q) is not a root of a polynomial with probability which depends only on the degree of the
polynomial and the field size: the well known Schwartz Zippel lemma.

5


