
Lecture 1

Solving Linear Programs with the Ellipsoid
Algorithm

November 12, 2004
Lecturer: Kamal Jain

Notes: Chris Ré

1.1 Overview
Recall from last time:

Given a convext set C , C ⊆ EV (E) = R, a ball B(δ, ε) ⊂ C and a polytime separation oracle then we
can find a point inside C in polynomial time. This is polynomial n and log(1

ε
).

Remark. The existence of a ball is necessary because of the perturbation of the center of the ellipsoid.
Our goal today is to solve a linear program in weakly polynomial time. Concretely given Ax ≤ b want

to see if there exists a feasible x. We will be assuming the LP is explicitly given.
Remark. We can get the separating hyperplane required of the oracle by subsituting the point x into Ax ≤ b
and finding which constraints are violated. These form the separating hyperplane.

Notation Size(p
q
) = log(|P | + 2) + log(|Q| + 2).

Size(A) =
∑

ij Size(aij)
Size(A, b) = Size(A) + Size(b).

We will find an algorithm polynomial in Size(A, b).
It is easy to see that Size(det(A)) ≤ nlog(n)Size(A). We can just sum the columns. The important

thing to note is that the determinant of a matrix is polynomially sized in the matrix size. Below we will show
that there is an easily describable solution - that is a solution which is polynomially sized as above.

Lemma 1.1. Ax ≤ b is feasible ↔ Ax ≤ b and ∀i |xi| ≤ R0 with R = 2log(A,B)

If the LHS is infeasible, it is clear that the right-hand side is also infeasible.
If the LHS is feasible, we need to do some work. Notice, that if there is a corner point we can reach our
conlcusion because it is of small size. However, corner points don’t always exist. Just consider x+ y <= 2.
We need to generalize this in some way .

Definition 1.1 (face). A face is a hyperplane described by H,c i.e. Hx = c. Then we define face(H, c) =
{x|x s.t. Hx = c and Ax ≤ c. Further this set must be minimal with respect to inclusion and non-trivial.

It is the set intersection of the solution sets of Hx = c and Ax ≤ c. It should be clear that faces always
exist.

1

Proof. Now we assume the LHS is feasible. Consider ∀j ∈ S Axj = b and there is a solution to the LP.
Choose such a maximal such S. Notice we can find S by considering the inequalities in any order. Now, we
want to show that we only need to consider the equality conditions for a small solution.

Assume that z satisifies AS , the set of tight equalities, but ∃j /∈ S that violates the inequality. That is∑
i aijz > bj .
We know that there exists some feasible solution, by our selection of S, call this solution y. Now we

draw the line y to z. Move along this line, we must cross into the set. At this point a new constraint will have
gone tight, this contradicts the maximality of S. Therefore, we do not need to concern ourselves with the
inequalities when dealing with a maximal set S. Notice that the same procedure can get started by picking
two points one on the exterior and one on the interior.

This means there is a small solution. Let AS be the matrix of equality constraints, zeroing out the
constraints to make it square. ASx = bs, and x. By cramer’s rule, we get that x = AS

−1bs = 1
det(AS)A

T bs.
We know that the determinant is poly sized, so we have a small sized solution.

To run the ellipsoid algorithm, we’d like to get a polynomially sized ball of feasibility around x. This
ball is because our running time bound for the ellipsoid algorithm depends on a volume bound. Our idea is
that we can create a new program that is feasible iff the original one is. This new program will be formed
by relaxing constraints in each direction. Our plan is to show that relaxing a sufficiently small ball around
the constraints (the bjs) has our property. We will then use this fact, to show that there is such a set.

Lemma 1.2. Ax ≤ b is feasible ↔ ∃ε0 such that ∀ε < ε0Ax ≤ b + ε.

Proof. It is clear that a feasible on the LHS is a feasible point on the right hand side. We need to show that
if the LHS is infeasible, we can choose the poly sized ball such that the other program remains infeasible.

Now if Ax ≤ b is infeasible using the completness of Farkas’s Lemma, we get a y such that: yT Ax = 0
and yT b = −1. By direct calulation, y is a small certificate i.e. |y| ≤ 2Poly(Size(A,b)). Notice now that
yT (b + ε) ≤ 0 because we can choose ε such that yT ε ≤ 1 − yT b.

Lemma 1.3. Ax ≤ b ↔ ∃ε0 A(x + ε0) ≤ b + ε1

Proof. Direct calculation, we get to choose ε0. Choose it so that Aε0 ≤ ε1, this is easy to do by continuity.
Applying the cramer’s rule style argument above, we see that ε0 is poly sized.

We now have a program, namely the second one which has a ε ball around the solution. The ball has
volume since it is of full dimension, and thus the ellipsoid algorithm can be used.

1.1.1 Total Unimodular Functions
Most of the times LPs arise by relaxing integrality constraints. Here we are concerned with programs of the
form.

Ax ≤ b x ∈ {0, 1,−1}

Definition 1.2. Unimodular A matrix A is called Unimodular if det(A) = ±1

Definition 1.3. Total Unimodular A matrix A called is Total Unimodular if every submatrix of A is uni-
modular

2

What we will like to show is that any optimal solution to the program can be converted to an integral
solution.

An example of Total Unimodular matricies are when we write a directed graph G as a matrix using the
following rule. ∀(u, v) = ei ∈ E(G) → aui = −1avi = 1.

Proof. Proceed by induction, consider matricies of size n × n. Consider a column, this corresponds to an
edge.

Case 1 No portion of this edge is remaining in this sub-matrix. In other words, the nodes that correspond
to rows are not incident to this edge. In this case the whole column consists of 0s, therefore the determinat
of this matrix is 0.

Case 2 There is one row in the calculation, corresponding to a node incident to the considered edge
(column). The induction hypothesis tells us the sub matrix has determinant in {0,±1}. So multiplying by
±1 keeps us in {0,±1}.

Case 3 It must be the case that all edges/nodes are present, else we apply one of the first two cases. In this
case, we can add two rows not affecting the determinant to get a column of 0s. Therefore the determinant of
this square matrix is 0.

1.1.2 Fractional Flow
We are talking here about the integrality of the flow in a max-flow/min-cut style algorithm. There are two
ways to see this, one inline with the above is to examine the dual created above. The second way inline with
the ford-fulkerson algorithm is to look at the residual graph.

3

