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Dynamic Programming
November 1, 2004

Lecturer: Kamal Jain
Notes: Tobias Holgers

10.1 Knapsack Problem

We are given a set of items U = {a1, a2, . . . , an}. Each item has a weight
wi ∈ Z+ and a utility ui ∈ Z+. Our task is to find the most valuable set of
items with respect to the utility function under the constraint that the knapsack
has a fixed capacity of B. Find S ⊆ U satisfying:

condition
∑
i∈S

wi ≤ B

maximum
∑
i∈S

ui

10.2 Types of Polynomial Algorithms

This section present three types of polynomial algorithms. Each definition con-
tains an example run time for the Knapsack problem if such an algorithm ex-
isted.

Definition 1 Polynomial algorithm ≡ Running time Poly(Instance size)

Poly(
∑

i

log wi +
∑

i

log ui)

Definition 2 Strongly polynomial ≡ Running time Poly(#numbers in instance)

Poly(n)

Definition 3 Pseudo polynomial ≡ Running time Poly(magnitude of numbers).
Where numbers are written in unary encoding. Unary encoding for n ≥ 0 is n+1
consecutive ones, e.g. 5 = 111111.

Poly(
∑

i

wi +
∑

i

ui)

10.3 Dynamic Programming

We have an instance I of a problem we like to solve using dynamic programming.
Now create sub-instances S = {I1, I2, . . . , Ik}. The dynamic program then does:
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1. It puts a total (or partial) order on S.

2. First sub-instance is easily solvable. (total order)
All minimal instances are easily solvable. (partial order)

3. The last instance is your original instance. (total order)
The maximum instance is your original instance. (partial order)

4. Take any instance Im ∈ S
If you know the solutions of the previous instances then a solution of
Im can be computed easily. For the partial ordering you must know the
solutions of the lower instances.

10.4 Dynamic Programming for Knapsack Problem

We will here apply the previous four steps of a dynamic programming algorithm
on the knapsack problem. First define a sub-instance A(i, w) which is the max-
imum utility using only items {a1, a2, . . . , ai} and with a maximum capacity of
w.

The second item is simply a question of whether we are able to pick the only
item with regard to the maximum capacity, i.e. A(n, B).

A(1, w) =
{

0 w < a1

u1 w ≥ a1

Our final solution, which corresponds to item three, is the sub-instance over
all items using the original capacity.

We can show item four by induction. We can determine the solution to a
sub-instance using only previous/lesser sub-instances.

A(i, w) A(i′, w′)
i′ ≤ i, w′ ≤ w where at least i′ < i or w′ < w

The addition of one more item is similar to the case where we only had one
item. We either add it to the previous sub-instance with room for the new item
or we don’t pick it at all.

A(i, w) = max
{

ui + A(i− 1, w − wi) w ≥ wi

A(i− 1, w) otherwise

The running time for this dynamic programming algorithm is n · B. It is
also pseudo polynomial in B if all inputs are given in unary.

10.5 Knapsack Minimization Problem

The running time of the previous algorithm depends on B which might be large.
We rather want it to be pseudo polynomial in

∑
i ui. Rewrite the sub-instances

to be A(i, U) which is the minimum weight using only items {a1, a2, . . . , ai} and
a utility of at least U . The recursion then looks like
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A(i, U) = min
{

wi + A(i− 1, U − ui) U ≥ ui

A(i− 1, U) otherwise

This dynamic programming algorithm has a running time of n ·
∑

i∈U ui.
The exact solutions of the two different recursive formulations of the knapsack
problems are equivalent. In the approximation case they are different.

10.6 Approximation Scheme

Definition 4 An α-approximation algorithm produces a solution satisfying.

1. Minimization problem, α ≥ 1
solution ≤ α ·OPT

2. Maximization problem, α ≤ 1
solution ≥ α ·OPT

10.7 An Approximation Scheme

1. Minimization problem
1 + ε approximation algorithm for every ε > 0

2. Maximization problem
1− ε approximation algorithm for every ε > 0

A polynomial time approximation scheme (PTAS) is a (1+ε)-approximation
with a runtime that is polynomial in the instance size. Here follows a couple
of examples of run times and whether or not they are algorithms polynomial in
the instance size.

n
ε , 2

n
ε n, n

1
ε , n2

1
ε ok

( 1
ε )n not ok

A fully polynomial time approximation scheme (FPTAS) is a PTAS where
the run time is polynomial is 1

ε too.

Proof 1 We have a integer valued maximization problem such that OPT >
2Poly(instance) for all instances. Now choose ε = 1

2P oly(instance)+1 . Assume there
exists a FPTAS, i.e. there exists a (1 − ε)-approximation algorithm with the
running time Poly(instance, 1

ε ).

(1− ε)OPT > OPT − ε2Poly(instance) = OPT − 2Poly(instance)

2Poly(instance)+1
> OPT − 1

Our approximation is therefore an optimal solution with the running time
Poly(Poly(instanceunity)). The algorithm is hence pseudo polynomial. �
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10.8 Approximation of Knapsack

An approximation algorithm can often be created by rounding off the least
significant bits of the input numbers. The amount of rounding is determined by
1
ε and some error threshold.

Here follows a (1 − ε)-factor algorithm for the Knapsack problem. The
solution A ≥ (1− ε)OPT and the allowed run time is Poly(n, 1

ε ). Now assume
that all ui ≤ B, if not, throw the item away since it cannot be picked. Then
take the largest ui ≈ n

ε and scale all weights by 1
ε and turn into an integer.

f =
ε · umax

n

And the new weight then becomes.

u′
i =

⌊
ui

f

⌋
And the running time is n

∑
i∈U u′

i where each u′
i is bounded by n so we get

a pseudo polynomial algorithm.

Proof 2 Let
OPT ≡ optimal solution
OPT′ ≡ value of OPT solution with u′

i weight function
A′ ≡ OPTimum solution to out rounded instance with util-

ity function u′
i

A ≡ Value of out solution with respect to original utilities

The following holds
A′ ≥ OPT′ A ≥ fA′

From which this follows

ui

f
≤ u′

i + 1

ui ≤ fu′
i + f

OPT ≤ fOPT′ + fn

≤ fA′ + fn

≤ A + fn

Which gives us the result

OPT− fn ≤ A

OPT−
∑

umax ≤ A

And since umax ≤ OPT we get OPT − εOPT ≤ A which proves that our
approximation is within a factor (1− ε). �
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10.9 Traveling Salesman Problem (TSP)

For som dimension d, we got vertices a1, a2, . . . , an ∈ Rd. Find the shortest
length tour visiting all the vertices. The distance function is the vector norm
defined as

x, y ∈ Rd :

√√√√ d∑
i=1

(xi − yi)2

Lemma 1 An optimum TSP tour is a non self-intersecting polygon on a1, a2, . . . , an.

• Lets start by showing that the tour is a polygon. The example tour a1, a2, a5, a3, a2, a6, . . .
visits the vertex a2 multiple times and since the triangle inequality holds,
i.e.

distance(a3, a6) ≤ distance(a3, a2) + distance(a2, a6)

We can remove the vertex a2 from the tour and thereby decreasing the
total length which means that the tour wasn’t optimal to start with.

This gives us that the tour is a polygon.

• What if we have crossing edges? Remove them and reconnect the two com-
ponents. This will decrease the length of the tour so the optimal solution
has no crossings. The decrease in length is given by the triangle inequality
which can be applied to the vertices and the midpoint.

a1 a3

a7 a5

a1 a3

a7 a5

a1 a3

a7 a5

Figure 1: Remove crossing and reconnect components

10.10 Polynomial Time Approximation Scheme for TSP

Create a bounding box for all vertices. That is, create the smallest axis parallel
box containing all the points. Now, without loss of generality, assume the width
and height are L = 4n2. Assume further, without loss of generality, that n = 2k.

Approximate by creating a unit grid for the bounding box and move points
to center of the square.
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Figure 2: Approximation of TSP tour. Gray tour is exact and black approxi-
mated.

Lemma 2 OPT is the original optimal solution and let OPT′ be the optimum
solution, i.e. the same tour, for the rounded instance.

∀ε > 0 : OPT′ ≤ (1 + ε)OPT

Which holds if n is big enough, n > 1
ε . Going to the center and going back

to the original vertex adds a maximum distance of 4 for each square.

OPT′ ≤ OPT + 4n

≤ OPT +
4n2

n

≤ OPT +
OPT

n

= (1 +
1
n

)OPT

Divide the bounding box into four square areas and place in a tree, see figure
3. Keep dividing and adding square areas so that the leaf nodes of the tree are
unit squares. The height of the tree will become log(4n).

x

y
L

L

..

.

..

.

T

Figure 3: Division into square areas

In each box we solve the problem of minimizing path lengths with the given
entry and exit points. The minimum path that covers all points will be non
self-intersecting due to the lemma.

Add entry and exit portals to each unit square, see figure 4. Edges will be
rounded to enter/exit from the closest portal. Lets create m portals on each
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side of the square and have double portals on the corners. Pick m = O( log n
ε ).

Enumerating all pairings of portals then takes time

2m ≡ 2O( log n
ε ) ≡ nO( 1

ε )

Which is polynomial in n.

m

Figure 4: Entry and exit portals on square

Assumption 1 There is a tour of cost at most (1 + ε′)OPT such that the tour
enter or exit a square from the portals. Proof will be presented on next lecture.
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