
Problem Set 7

Deadline: Nov 21st in Gradescope

- 1) In this part implement the following heuristic to find the hidden partition problem: You are given a graph G=(V,E) with adjacency matrix A with n=400 vertices. The graph is stored in the file "hidden1.in". Let D be a degree matrix where $D_{v,v}=d(v)$ is the degree of a vertex v. Then $\tilde{A}:=D^{-1/2}AD^{-1/2}$ is called the normalized adjacency matrix of G. Let x be the second largest eigenvector of \tilde{A} ; let $y=D^{-1/2}x$. find the median of values in y and output vertices below the median as one community and the rest as the other. This graph is constructed with p=0.65 and q=0.05. The true partition is in the file "hidden1.out". Compare your output with the true hidden partition and report how many misplaced vertices are there in your output.
- 2) a) Let G be a graph with 3n vertices that is a union of two disjoint copies the complete graph with n vertices, K_n , connected by a path of length n. Show that $\lambda_2(\tilde{L}_G) \leq O(1/n^3)$, where \tilde{L} is the normalized Laplacian matrix.

b) Prove that for any unweighted connected graph $G = (V, E), \phi(G) \ge \Omega(1/n^3)$.