
CSE 521: Design and Analysis of Algorithms I Fall 2025

Lecture 6: Streaming / Locally Sensitive Hashing
Lecturer: Shayan Oveis Gharan 10/13/2025

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

6.1 Introduction to Streaming Algorithms

As an application of hashing and the unbiased estimator, we are going to discuss streaming algorithms.
Streaming algorithms has become a hot topic in computer science nowadays because of the massive amount
of data that we have to process. Typically, we do not have enough space to store the entire data. Instead, we
process the data in a streaming fashion, and sketch the information we want from the data by a few passes.

We will talk about algorithms for F0 and F2 estimation. Those are classic results appeared in the first paper
of streaming algorithms [AMS96]. The problem is as follows.

Let U = {1, ..., |U|} be a large universe of numbers, and let X1, ..., Xn be a sequence of numbers in U . Let

fi =
∑n

j=1 I[Xj = i] be the number of times i appears in the sequence. For 0 ≤ k ≤ ∞, we let Fk =
∑|U|

i=1 f
k
i ,

where we define 00 = 0. The interesting values of k for us are

• When k = 0, F0 counts the number of distinct elements in the sequence.

• When k = 2, F2 is the second moment of the vector (f1, ..., f|U|).

• When k = ∞, F∞ corresponds to the number of times the most frequent number shows up in the
sequence.

The following theorem is proven in [AMS96]

Theorem 6.1. There is a streaming algorithm that for any sequence x1, . . . , xn of the universe {1, 2, . . . , |U |}
gives a (1− ϵ) approximation of F0 and F2 using O(log |U |+logn

ϵ2 · log 1
δ) space with probability 1− δ.

Here, we only give an algorithm for F2 and we leave the algorithm for F0 as a homework exercise.

We remark that allowing randomness and approximated solution is crucial. There is no hope to use a
deterministic or exact algorithm to achieve logarithmic amount of space. Please see Tim Roughgarden’s
Lecture notes for more details.

6.2 F2 moment

Before discussing ideas to prove Theorem 6.1, let us first discuss a natural idea for streaming problems. Since
we are dealing with a “big data” problem, we may first down sample the input into a smaller length, then
we calculate the second moment of the down sample and we use it to estimate the second moment of the

6-1

http://theory.stanford.edu/~tim/w15/l/w15.pdf

6-2 Lecture 6: Streaming / Locally Sensitive Hashing

original input. Consider the following set of two inputs.

1, 2, 3, 4, . . . , n

1, 1, . . . , 1︸ ︷︷ ︸
m times

, 2, 2, . . . , 2︸ ︷︷ ︸
m times

, . . . , n/m, n/m, . . . , n/m︸ ︷︷ ︸
m times

,

where m = Ω(
√
n). Observe that any down samples of the first sequence gives completely distinct numbers,

and any down sample of the second sequence of size O(
√
n) also gives (almost) completely distinct numbers

with a constant probability. So, any streaming algorithm that is based on down sampling sees almost the
same thing, i.e., distinct elements, in both cases. However, the second moment of the first sequence is n and
the second moment of the second one is O(n3/2), so we don’t expect a streaming algorithm based on down
sampling to size at most O(

√
n) obtain an estimate better than

√
n of the true second moment.

Our plan for the proof is that we design an unbiased estimator for F2 that uses O(log |U |+ log n) amount of
memory and has a relative variance of O(1). Then, by ?? we only need O(1

ϵ2 log
1
δ) independent samples of

our unbiased estimator; so it is enough to run O(1
ϵ2 log

1
δ) independent copies of our algorithm on the input

sequence and run the algorithm of ?? on the output of these independent copies.

Before designing algorithm for estimating F2, let’s revisit the random walk example that we talked about
few lectures ago. Denote random variable Xi

Xi =

{
+1, w.p. 1/2

−1, w.p. 1/2

Let X =
∑

i Xi. Using the Hoeffding bound, we have showed that for any constant,

P[|X| ≥ c
√
n] ≤ e−Ω(c2).

We will show that X ≥ Ω(
√
n) with a constant probability, that is P[X ≥ Ω(

√
n)] ≥ Ω(1). This conclusion

follows from the centreal limit theorem (CLT). Because limn→∞
1√
n

∑
i Xi → N (0, 1). So,∑

i

Xi →n→∞ N (0,
√
n).

Therefore, we expect
∑

i Xi to be (almost) uniform in the interval [−
√
n,
√
n]. So, the particle is almost

uniformly distributed in the interval [−
√
n,
√
n].

We show that E[X2] ≥ n, which is enough to show X ≥ Ω(
√
n) with a constant probability, using the

Hoeffding bound.

E[X2] = E

(∑
i

Xi

)2


= E

∑
i,j

XiXj


=

∑
i,j

E [XiXj]

=
∑
i

E
[
X2

i

]
+
∑
i̸=j

E [XiXj]

=
∑
i

1 +
∑
i̸=j

E [Xi]E [Xj] = n (6.1)

Lecture 6: Streaming / Locally Sensitive Hashing 6-3

where we used the pairwise independence between Xi and Xj .

Back to estimating F2 problem, we use a similar idea. Choose a pairwise independent hash function h : U →
{−1, 1}. Eventually we will see that we need to make h 4-wise independent. We start the algorithm letting
Y = 0; when we read Xi, we’ll update Y ,

Y ← Y + h(Xi).

Note that at the end of the algorithm Y =
∑n

i=1 h(Xi). We claim that Y 2 is the unbiased estimator of F2.

Claim 6.2. Y 2 is an unbiased estimator of F2, i.e.,

E
[
Y 2
]
= F2 =

|U |∑
i=1

f2
i .

Before proving the claim let us consider two special cases. First suppose X1 = 1, X2 = 2, . . . , Xn = n. Then,∑
i h(Xi) can be seen as a (pairwise independent) random walk of length n started from 0. So, by (6.1),

E
[
Y 2
]
= n which is the same as F2. Note that in (6.1) we only use pairwise independence of Xi, Xj (for all

i, j).

For the second example, suppose X1 = X2 = · · · = Xn = 1. Then, f2 = n2 and Y = nh(1), So,

Y 2 = n2h(1)2 = n2 = f2.

Now, we are ready to prove the claim.

Proof. First, observe that we can write Y =
∑

i fih(i). Therefore,

E[Y 2] = E

[
(
∑
i

fih(i))
2

]
(6.2)

= E

∑
i,j

fifjh(i)h(j)

 (6.3)

=
∑
i,j

fifjE [h(i)h(j)] (6.4)

=
∑
i

f2
i E
[
h(i)2

]
+
∑
i,j

fifjE [h(i)]E [h(j)] (6.5)

=
∑
i

f2
i + 0 = F2, (6.6)

where the second to last equality follows by pairwise independent of h. Note that the expectations are over
random choices for our pairwise independent hash function h. Therefore, Y 2 is the unbiased estimator of
F2.

Now, by Theorem 5.2, we upper bound the relative variance of Y 2. First, we show that σ2(Y 2) ≤ 2(F2)
2.

Then, we show that the relative variance of Y 2 is O(1). In the proof of the next claim we use that h is 4-wise
independence.

Claim 6.3. σ2(Y 2) ≤ 2(F2)
2.

6-4 Lecture 6: Streaming / Locally Sensitive Hashing

Proof. Recall that σ2(Y 2) = EY 4 − (EY 2)2. So, first we upper bound EY 4.

EY 4 = E

(∑
i

fih(i)

)4

(6.7)

= E
∑
i,j,k,l

fifjfkflh(i)h(j)h(k)h(l) (6.8)

=
∑
i,j,k,l

fifjfkflE [h(i)h(j)h(k)h(l)] (6.9)

=
∑
i<j

f2
i f

2
j

(
4

2

)
+
∑
i

f4
i (6.10)

Note that in the last equality we used 4-wise independence of h. in particular if any of i, j, k, l appear an
odd number of times then E [h(i)h(j)h(k)h(l)] is zero. So, the only case that it is nonzero is if i appears 4
times or i, j each appear 2 times. The term

(
4
2

)
correspond to choosing the locations of i (and the rest would

be j). Therefore,

σ2(Y 2) = 6
∑
i<j

f2
i f

2
j +

∑
i

f4
i −

(∑
i

f2
i

)2

(6.11)

= 4
∑
i<j

f2
i f

2
j (6.12)

≤ 2

(∑
i

f2
i

)2

(6.13)

= 2(F2)
2 (6.14)

as desired.

It follows from the above claim that the relative variance of Y 2 is

σ2(Y 2)

(F2)2
≤ 2F 2

2

F 2
2

= 2.

So, by Theorem 5.2 we only need O(1
ϵ2 log

1
δ) independent samples of Y to give a 1± ϵ approximation of F2.

Now, let us discuss the final algorithm. We choose 20
ϵ2 log 1

δ independent 4-wise independent hash functions;
For k = 20/ϵ2, let h1, . . . , hk be k of those functions. Start with Y1 = Y2 = · · · = Yk = 0, after reading Xi,
let Yj = Yj+hj(Xi) for all 1 ≤ j ≤ k. Then, Z = 1

k

∑
j Y

2
j gives a 1±ϵ approximation of F2 with probability

9/10. To get 1− δ probability of success we just need to run the above idea on log 1
δ independent copies of

Z and return the median of all values that we get.

The total amount of memory that we use is as follows. We need to use O(log n) amount of memory to store
each Y ; we need to use O(log |U |) amount of memory to store a 4-wise independent hash function. So, for

each copy we need O(log n+ log |U |) amount of memory. Since we are using O(1ϵ
2
log 1

δ) independent copies

we use O(logn+log |U |
ϵ2 log 1

δ) bits of memory as desired. This completes the proof of Theorem 6.1. More
details can be referred to [AMS96].

Lecture 6: Streaming / Locally Sensitive Hashing 6-5

6.3 Introduction to the Nearest Neighbor Search Problem

In this lecture we will discuss a reduction of the nearest neighbor search (NNS) problem to that of finding
a locally sensitive hashing function as invented in [IM98].

The NNS problem is as follows: Suppose P ⊂ Rd is a set of n points. Given any q ∈ Rd find

min
p∈P

dist(p, q).

The distance here could be any arbitrary distance function; in this lecture we will talk more about ℓ1 or ℓ2
distances even though the machinery that we describe can be generalized to a variety of distance functions.
Some applications include: web search, document search, or clustering - these are all situations in which
knowing how “far” an object is from other objects tells us important information.

A naive solution would be to store all of the points and simply loop over all p ∈ P to find the minimum
distance. This takes O(n · d) time and space, which is not good. Ideally we would like to have a query time
that is sublinear in n; we may allow for a super-linear amount of memory to store the data structure.

If d = 1 we could pre-process the points by sorting them and then finding the distance minimizing point
would simply reduce to binary searching for p in a list, and returning the closest of the two adjacent elements
in the list. This takes O(logn) query time and O(n) bits of memory.

Extending the pre-processing idea to higher dimensions d leads to what are known as k-d trees: here the
idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data at hand.
Unfortunately k-d trees generally fail to beat the naive approach when d = Ω(log n). It turns out that in all
known approaches the size of the data structure (or the query-time) grows exponentially in d.

The main underlying difficulty is the well-known facts in high dimensions, which is usually referred to as the
“curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube of side length
a. Then, a cube of side length a randomly positioned in the space intersects 2d many cells of the grid. This
phenomenon essentially implies that a NNS algorithm based on kd-trees takes time O(2d) in expectation to
look into all of the nearby cells of a query point to find the closes point.

6.4 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for approximate
solutions. That is instead of finding the closest point p to a query point q, we are happy to find a point p
such that

dist(p, q) ≤ c ·min
s∈P

dist(s, q),

where c > 1 is the approximation factor of in our algorithm. As we will see the memory and the query time
of our algorithm will be a function of c.

So, let us define the approximate NNS problem. For c > 1, r > 0, the ANNS(c, r) is defined as follows: Given
a set point of points P , construct a data structure such that for any query point q, if there is a point p such
that dist(p, q) ≤ r, it returns a point p′ such that

dist(p′, q) ≤ c · r.

If there is no such p, then we return nothing.

It is not hard to see that we can give a c approximation to the nearest neighbor search problem using the
solution to ANNS(c, r). In fact, all we need to do is to guess minp∈P dist(p, q) up to a multiplicative factor

6-6 Lecture 6: Streaming / Locally Sensitive Hashing

of 1± ϵ. By an approporiate scaling assume

diam(P) = max
p,p′∈P

dist(p, p′) ≤ 1

Also, suppose δ > 0 is the minimum possible distance for all pairs of points in our dataset. Roughly speaking,
1/δ can represent the bit precision of the data points stored in our system. We solve ANNS(c(1− ϵ), r) for
the following values of r,

δ, (1 + ϵ)δ), (1 + ϵ)2δ, . . . , 1.

We report the minimal value of r for which we find a point at distance c(1− ϵ) of q. This reduction imposes
an additional O(log 1

δ) overhead to the query time and the memory of our algorithm. This is because we
need to maintain a separate data structure for each possible value of r in the above sequence.

6.5 Locally Sensitive Hashing functions

From now on we only focus on the ANNS(c, r). The main interesting idea of [IM98] is a reduction from
this problem to the design of a locally sensitive hash (LSH) function. Roughly speaking, an LSH is a hash
function which is sensitive to distance. Ideally, we would like to have a hash function that maps “close points”
to the same value with a high probability and maps “far points” to different values. To be more precise, if
dist(p, q) ≤ r we want them to map to the same value, with a high probability, and if dist(p, q) > c · r we
want them to map to different values with a high probability. Let us give a formal definition

Suppose we have a family a functions H = {h : P → Z} of maps from our points P to the set of integers Z;
we say H is (c, c · r, p1, p2)-LSH if: for all p, q ∈ P :

dist(p, q) ⩽ r =⇒ P [h(p) = h(q)] ⩾ p1

dist(p, q) ⩾ c · r =⇒ P [h(p) = h(q)] ⩽ p2

where the probabilities are over h ∼ H. Ideally, we want to have p1 ≫ p2, but as we see this highly depends
on the magnitude of c. The main idea in the reduction of [IM98] is that even if p1 is slightly larger than p2
it is possible to use many independently chosen functions from H to boost p1 to a number close to 1 and p2
to 1/n.

Before describing the reduction, let us give an example of LSH for binary vectors. We will see several
examples in HW2. Suppose P ⊆ {0, 1}d with Manhattan distance function

dist(p, q) = ∥p− q∥1,

i.e. dist(p, q) is the number of coordinates at which p and q have different bits. Consider the family
H := {hi}di=1 where

hi(p) = pi

is the ith bit of p. Then observe that for each p, q ∈ {0, 1}d

P [h(p) = h(q)] =
bits in common

total bits
=

d− ∥p− q∥1
d

= 1− ∥p− q∥1
d

.

Therefore,

P [h(p) = h(q)] =

{
≥ 1− r

d ≈ e−r/d if dist(p, q) ≤ r

≤ 1− c·r
d ≈ e−c·r/d if dist(p, q) ≥ c · r

.

So, H is (c, c · r, e−r/d, e−c·r/d)-LSH.

Lecture 6: Streaming / Locally Sensitive Hashing 6-7

6.6 Reduction to LSH

Now let us discuss the reduction from ANNS(c, r) to LSH? Well if we had a (r, c · r, p1, p2)-LSH family such
that p1 ≈ 1 and p2 ≈ 0 we could solve the problem as follows: We start by choosing a function h ∼ H
uniformly at random and we store h(p) for all points in P . Given a query point q, we compute h(q) and see
if there is any point p ∈ P where h(p) = h(q). Note that we can do the lookup in O(1) time using a hash
table as we discussed in previous lectures. If there is no such point p, then with high probability there is no
point at distance c · r of q. Thus we only need to show that if we are given an (r, c · r, p1, p2)-LSH family
with the assumption p1 > p2, then we can boost it to get p1 ≈ 1 and p2 ≈ 0.

We do this boosting in two steps. First, we just try to make p2 small. To do this it suffices to take k
independent hash functions from H, and hash each point p ∈ P to a k-dimensional vector,

h(p) = [h1(p), . . . , hk(p)].

Then, by the independence of h1, . . . , hk, for any two points p, q,

dist(p, q) ⩾ c · r =⇒ P [h(p) = h(q)] ⩽ pk2 .

But this doesn’t help us increase p1. In fact, the above hash function maps two close points to the same
vector with probability at least pk1 . How do we do this? We choose ℓ independent copies of the above
k-dimensional hash function, f1, f2, . . . , fℓ, for a sufficiently large ℓ, with high probability there is an i such
that fi(p) = fi(q). Assume,

f1(p) = [h1,1(p), . . . , h1,k(p)]

...

fℓ(p) = [hℓ,1(p), . . . , hℓ,k(p)]

It follows that if dist(p, q) ≤ r, then

P [∃i | fi(p) = fi(q)] = 1− P [∀i, fi(p) ̸= fi(q)]

= 1− P [fi(p) ̸= fi(q)]
ℓ

⩾ 1− (1− pk1)
ℓ

The details of the algorithm is described in Equation 6.6.

Next, we describe how to tune the parameters k, ℓ. We choose k such that pk2 = 1/n. Also, assume

p1 = pρ2, (6.15)

for some ρ < 1. As we will see ρ is the main parameter that determines the running time/memory of our
algorithm. We choose ℓ = Θ(nρ lnn).

Fix a query point q; it follows by linearity of expectation that for any i,

P [∃p : dist(p, q) > c · r, fi(p) = fi(q)] = n · pk2 ≤ 1.

Summing up over all i, in expectation there are O(ℓ) points in our data set which map to the same hash
value as q for some i. This implies an overhead of O(ℓ) in the query time.

On the other hand, if dist(p, q) ≤ r for some p ∈ P , then

P [∃i : fi(p) = fi(q)] ≥ 1− (1− pk1)
ℓ = 1− (1− pρk2)ℓ = 1− (1− n−ρ)ℓ ≈ 1− e−ℓn−ρ

= 1− 1/n.

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least 1−1/n.
The algorithm in expectation had O(ℓ · d) overhead to examine O(ℓ) points at distance more than c · r form
q.

6-8 Lecture 6: Streaming / Locally Sensitive Hashing

Algorithm 1 LSH Algorithm

Preprocessing:
Choose k · ℓ, h1,1, . . . , hℓ,k functions uniformly at random from H.
Construct ℓ hash tables; for all 1 ≤ i ≤ ℓ store fi(p) = (hi,1(p), . . . , hi,k(p)) for all p ∈ P in the i-th table.
For all i, sort all values of {fi(p) : p ∈ P}.

Query(q):
for i = 1→ ℓ do

Compute fi(q).
Find all points p where fi(p) = fi(q) using a binary search on table i. For all such points if dist(p, q) ≤

c · r, output p.
end for

6.7 Space and Time Complexity of the Reduction

The algorithm needs to maintain O(ℓ) hash tables. In each hash table we need to store n = |P | hash values
where each value is a k dimensional vector. So, the space complexity of the algorithm is

O(ℓ · n · k) = O(n1+ρ log n

log 1
p2

).

For any query point q the query time is O(ℓ · k) time to compute fi(q) for all 1 ≤ i ≤ ℓ. For any candidate
close point p we spend O(d) time to calculate dist(p, q). Let |O| be size of the output, i.e., the number of
points at distance c · r from q. In expectation we examine O(ℓ) far points that we don’t output. So, the
query time is O(d(ℓ+ |O|) in expectation. So, the query time is

O(d(ℓ+ |O|) + ℓ · k) = O

(
nρ

(
d+

log n

log 1
p2

)
+ |O|d

)
.

Ignoring lower order terms, in particular the size of the output and the dimension, the algorithm runs with
memory O(n1+ρ) and querytime O(nρ).

Let us calculate ρ for the binary vector example that we described at the beginning. Recall that ρ is chosen
such that p1 = pρ2, so

ρ =
ln 1

p1

ln 1
p2

=
r/d

c · r/d
=

1

c
.

For example, if c = 2, we need O(n1.5) to store hash tables and we have O(
√
n) query time. As we see the

query time (and memory) get significantly better as we increase c. In practice, we may tune the parameter
c based on the amount of resources available to us.

It has been a very active area of research to design the best of LSH functions for many metrics. In PS3 we
design LSH for ℓ1, ℓ2 distance where ρ = 1/c.

References

[AMS96] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating the frequency
moments”. In: STOC. ACM. 1996, pp. 20–29 (cit. on pp. 6-1, 6-4).

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing the curse of di-
mensionality”. In: STOC. ACM. 1998, pp. 604–613 (cit. on pp. 6-5, 6-6).

	Introduction to Streaming Algorithms
	F2 moment
	Introduction to the Nearest Neighbor Search Problem
	Reducing to Approximate Nearest Neighbors Search
	Locally Sensitive Hashing functions
	Reduction to LSH
	Space and Time Complexity of the Reduction

