
CSE 521: Design and Analysis of Algorithms I Fall 2025

Lecture 2: Concentration Bounds
Lecturer: Shayan Oveis Gharan 09/29/2025 Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Suppose there is an unknown distribution, D, and we want to estimate the mean. A possible suggestion is
to draw independent samples

x1, x2, . . . , xn

from D and return the empirical average,

1

n

n∑
i=1

xi.

Laws of large number say that as n goes to infinity the empirical average converges to the mean. The question
we want to address in this lecture is “how large should n be” in order to get a an ϵ-additive approximation
of the true expectation? As a real world application, we can use this idea to estimate the people opinion in
polling by asking only a few of the voters randomly.

We start this lecture by a simple example: Suppose that the average GPA in CSE 521 is 3.0 / 4.0. At most,
what fraction of the students have received at least a 3.5? It turns out in the worst case 1/7-th fraction
have received 0.0 and the rest, i.e., 6/7-th fraction have received 3.5. In other words, the worst case is when
everybody who has received below 3.5 indeed got 0 and all of those who got more than 3.5 indeed receive
nothing more than 3.5. We can justify this claim using Markov’s inequality.

2.1 Markov’s Inequality

Theorem 2.1 (Markov’s Inequality). Let X ≥ 0 be a random variable. Then for all k,

P [X ≥ k · E [X]] ≤ 1

k

equivalently:

P [X ≥ k] ≤ E [x]

k
.

So, in our class average GPA example, X denotes the GPA of a random student, E [X] = 3 and k = 7/6.
The inequality says at most 6/7 fraction of the students received at least 3.5 or at least 1/7 receive less than
3.5.

Proof. The proof is a simple one line argument,

E [X] =
∑
i

P [X = i] ≥
∑
i≥k

i · P [X = i] ≥
∑
i≥k

k · P [X = i] = k · P [X ≥ k]

So, P [X ≥ k] ≤ E [X] /k as desired.
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Observe that in the above proof is tight, i.e., all inequalities are equalities, if the distribution of X has only
two points mass,

X =

{
0 w.p. 1− 1/k

k + ϵ w.p. 1/k
.

In other words, this example shows that if E [X] is the only information that we have about X, then Markov’s
inequality is the best bound we can prove on deviations from the expectation of X.

2.1.1 Applications of Markov’s Inequality: Fixed points of permutations

Let [n] := {1, . . . , n}. A permutation, σ : [n] →1−1
onto [n], is a bijection between [n] and [n]. Suppose we a

choose a uniformly random permutation σ. What is the probability that for two i, j, σi = i and σj = j, i.e.,
that the permutation has two fixed points?

Let Xi = I [σi = i] . Let X =
∑

Xi. Note that X is exactly equal to the number of fixed points of σ. So
we want to upper bound P [X ≥ 2]. We are going to use Markov’s inequality, but first we need to calculate
E [X].

E [X] = E
[∑

Xi

]
=

∑
E [Xi] (by linearity of expection, not proven here)

=
∑
i

P [Xi = 1] (expectation of an indicator)

=
∑
i

1

n

= 1

So by Markov Inequality,

P [X ≥ 2] ≤ 1

2
.

2.2 Chebyshev’s Inequality

Markov’s Inequality is the best bound you can have if all you know is the expectation. In its worst case, the
probability is very spread out. The Chebyshev Inequality lets you say more if you know the distribution’s
variance.

Definition 2.2 (Variance). The variance of a random variable X is defined as

Var(X) = E
[
(X − EX)2

]
Let us prove an identity on Var(X).

Var(X) = E
[
(X − EX)2

]
= E

[
X2 − 2XE [x] + (E [X])2

]
= E

[
X2

]
+ (E [X])2 − 2(E [X])2

= E
[
X2

]
− E [X]
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where we used linearity of expectation. Note that for any number X, (X − EX)2 ≥ 0. Therefore, for any
random variable X, Var(X) ≥ 0. So, by above identity we always have

E
[
X2

]
≥ E [X]

2
,

i.e., the 2nd moment is at least the 1st moment squared.

Theorem 2.3 (Chebyshev’s Inequality). For any random variable X,

P [|X − EX| > ϵ] <
Var(X)

ϵ2

or equivalently

P [|X − E [X] | > kσ] ≤ 1

k2

where σ =
√
Var(X) is the standard deviation of X.

The second inequality in theorem can be read that any random variable is within 3 standard deviation of
the expectation with probability 90%. It turns out that Chebyshev’s inequality is just Markov’s inequality
applied to the variance R.V., Y = (X − E [X])2.

Proof. Let Y := (X − EX)2 be a nonnegative random variable. So, by Markov’s inequality,

P
[
Y ≥ ϵ2

]
≤ E [Y ]

ϵ2

In other words,

P
[
|X − E [X] |2 ≥ ϵ2

]
≤ Var(X)

ϵ2
.

Taking square root of the both sides of the inequality gives,

P [|X − E [X] | ≥ ϵ] ≤ Var(X)

ϵ2

as desired

2.2.1 Polling

In this section we use Chebyshev’s inequality to answer the question that we raised at the beginning of
this lecture. Suppose there is an unknown distribution D with mean µ and we want to estimate µ using
independent samples of D,

X1, X2, . . . , Xn

First, observe that by linearity of expectation,

E

[
1

n

∑
i

Xi

]
= µ.

So, we want to use Chebyshev’s inequality to upper bound,

P
[∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ϵ

]
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To use Chebyshev’s inequality, first we need to calculate the variance. Let X = X1+···+Xn

n be the empirical
average. We use the following lemma to bound the variance of X.

We say a set of random variables X1, X2, . . . , Xn are pairwise independent if for all 1 ≤ i, j ≤ n

E [XiXj ] = E [Xi]E [Xj ] .

Lemma 2.4. For any set of pairwise independent random variables X1, . . . , Xn

Var(X1 + · · ·+Xn) = VarX1 + · · ·+VarXn

Proof. We can write,

Var(X1 + · · ·+Xn) = E
[
(X1 + · · ·+Xn)

2
]
− (EX1 + EX2 + · · ·+ EXn)

2

= E

∑
i,j

XiXj

−
∑
i,j

E [Xi]E [Xj ]

=
∑

E
[
X2

i

]
− (E [Xi])

2

=

n∑
i=1

Var(Xi).

In the second to last equality we used pairwise independence.

Let’s go back to the polling example; recall X1, . . . , Xn are independent samples of D, so they are pairwise
independent, and by the above lemma,

Var(X) = Var

(
X1 + · · ·+Xn

n

)
=

1

n2
Var(X1 + · · ·+Xn) =

1

n2
(Var(X1) + · · ·+Var(Xn)) =

Var(D)

n

Therefore, by Chebyshev’s inequality,

P [|X − µ| ≥ ϵ] ≤ Var(D)

nϵ2
(2.1)

Now, let’s continue on the polling example, suppose for all i,

Xi =

{
1 w.p. p

0 otherwise
,

i.e., p fraction of the population would vote yes on the election, and we want to estimate p within ϵ additive
error. So, it all we need to do is to upper bound the variance of Xi, First, we calculate the second moment,
for all i,

E
[
X2

i

]
= 12 · p+ 02 · (1− p) = p.

Therefore,

Var(Xi) = E
[
X2

i

]
− E [Xi]

2
= p− p2 = p(1− p) ≤ 1

4
.

Therefore, by (2.1)

P
[∣∣∣∣∑i Xi

n
− p

∣∣∣∣ ≥ ϵ

]
≤ 1

4nϵ2
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Suppose we choose 10, 000 individuals from the population randomly and we calculate the empirical mean;
by above inequality with probability 15/16 our estimate is within 2% of the true mean. Note that the
importance of this inequality is the the size of the sample is independent of the size of the population. In
general if we want to obtain an ϵ-additive error with probability 1− δ we need O(1/δϵ2) many samples.

Note that the above analysis can easily be extended to the case where Xi’s are not necessarily Bernoulli. In
particular, suppose D is distributed on an interval [a, b] where D can take any real number in this interval.
It fallows that the variance of D is at most (b− a)2. This is because the different of any two numbers in the
support of D is at most b − a. Therefore, following the same analysis if we have n samples X1, . . . , Xn of
such a D then

P
[∣∣∣∣∑i Xi

n
− µ

∣∣∣∣ ≥ ϵ

]
≤ (b− a)2

nϵ2
.

where µ is the mean of D. So, to get an ϵ-additive error with probability at least 1− δ it is enough to have

n ≥ (b−a)2

ϵ2δ many samples.

Next lecture we will see a stronger concentration bounds, a.k.a., Chernoff bounds. We see that for the same
polling example it is enough to use O( 1

ϵ2 log
1
δ ) samples to obtain an ϵ-additive approximation of the mean

with probability 1− δ.

2.3 Birthday Paradox

The Birthday paradox is a well-known problem in probability theory which finds the probability that some
pairs of individuals in a set of n randomly chosen group of people will have the same birthday. It assumes
that each day of the 365 days of a year is equally probable for a birthday. It can be easily noted that the
probability reaches 100% when the number of people reaches 366, since there are 365 days in a year.

Let X1, X2, . . . Xn be n independent and identically distributed (i.i.d.) random variables, in the range
{1, 2, . . . N} where Xi denotes the birthday of the person i. We say there is a collision if for some 1 ≤ i, j ≤ n,
we have Xi = Xj . Otherwise, (if for all i, j, Xi ̸= Xj) we say there is no collision. We prove the following
two claims:

Lemma 2.5. If n ≤
√
N , then,

P [no collision] ≥ 1

2
.

Lemma 2.6. If n ≥ c
√
N , then,

P [collision] ≥ 1− 2

c2
.

Let Yi,j = I [Xi = Xj ] be the random variable indicating that Xi = Xj . Let Y =
∑

i,j Yi,j . Note that by
definition Y is always a nonnegative integer.

We start by proving Lemma 2.5. By definition of Y , it is enough to show P [Y = 0] ≥ 1/2; equivalently,
it is enough to show P [Y ≥ 1] ≤ 1/2. The latter inequality is very suitable for an application of Markov’s
inequality. To show the latter it is enough to show E [Y ] ≤ 1/2. By linearity of expectation,

E [Y ] = E

∑
i,j

Yi,j

 =
∑
i,j

E [Yi,j ] =
∑
i,j

P [Yi,j = 1] =

(
n
2

)
N

(2.2)

The last equality uses the fact that for all i, j, P [Yi,j = 1] = 1
N .
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So, by Markov’s inequality,

P [Y ≥ 1] ≤
(
n
2

)
N

=
n(n− 1)

2N
≤ 1

2
⇒ P [Y = 0] ≥ 1

2
(2.3)

which proves Lemma 2.5

Next, we prove Lemma 2.6. In this case, we want to lower bound P [Y ≥ 1]; or equivalently, upper bound
P [Y = 0]. Note that Markov inequality does not give any interesting bound in this case. In fact if the only
information we have about Y is its expectation then Y could be 0 with probability 1 − ϵ and E [Y ] /ϵ with
probability ϵ. So, to prove the claim we upper bound the variance of Y and use Chebyshev’s inequality.

First, observe that the random variables Yi,j ’s are pairwise independent, since Xi = Xj does not convey
any information about whether or not Xi = Xk for some k ̸= j. Also, note that Yi,j ’s are not three-way
independent; in particular, if Yi,j = 1, Yj,k = 1 then Yi,k = 1.

Therefore, by pairwise independence property of Yi,j ’s, we get

Var[Y ] =
∑
i,j

Var(Yi,j) =
∑
i,j

E
[
Y 2
i,j

]
− (E [Yi,j ])

2 =
∑
i,j

1

N
− 1

N2
≤

∑
i,j

1

N
=

(
n
2

)
N

(2.4)

Observe that variance of Y is less than its expectation. So, σY ≤
√
EY . As we mentioned in the previous

lecture, we expect that with high probability Y is within 3 standard deviation of its expectation. So, if
E [Y ] ≫ 0, we have Y ≥ 1 with high probability.

Now, let’s make this formal. Using Chebyshev’s inequality with ϵ = E [Y ], we get

P [|Y − E [Y ] | ≥ E [Y ]] ≤
(
n
2

)
/N((

n
2

)
/N

)2 =
N(
n
2

) ≈ 2

c2
(2.5)

Therefore,

P [Y = 0] ≤ P [|Y − E [Y ] | ≥ E [Y ]] ≤ 2

c2
. (2.6)

This shows that P [Y ≥ 1] ≥ 1− 2
c2 as desired. This proves Lemma 2.6.
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