CSE 521: Design and Analysis of Algorithms I Fall 2020

Lecture 17: LP Applications — Linear Modeling, Planning, Optimization
Lecturer: Shayan Oveis Gharan 12/02/20

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss several applications of linear programming. We start by discussing applications in
linear modeling, then we will go to applications in planning and optimization.

17.1 Linear Modeling

In this part we discuss the idea of linear modeling. This idea has been used in a number of areas of computer
science and finance. The rough idea is to disregard correlations between the parameters of a given problem
and formulate a linear model for our problem at hand. For many real-world problems this gives a very good
approximation of the optimum solution of the problem which involves the underlying correlations.

17.1.1 Example: Diet Problem

Suppose we have the problem of designing a diet that consists of certain quantities of various food groups,
with quantities chosen to maximize some desired function of the food chosen while also satisfying constraints
that are functions of properties of the food. The food groups are (v)eggies, (m)eat, (f)ruits, and (d)airy,
with each food having the known characteristics of (p)rice, number of (c)alories, and amount of (h)appiness
per unit of food (details in Table 17.1.1).

veggies | meat | fruits | dairy
price Do Pm Py Pd
calories Cy Cm cy cq
happiness hy R hy hq

Table 17.1: Constant-valued attributes for each food group.

In particular, we are assuming that one gram of veggies has price p,, ¢, calories and gives us h, happiness.
Let ©,, m, zf, and x4 be the variables indicating the amount of grams from each of the four group that
we should consume in a single day. Our objective is to choose xy, Tm, T s, x4 to maximize overall happiness,
under the constraint that the total price must be less than 20 and the total number of calories must be less
than 1500. We can formulate this as a linear program by writing

maximize Xy - Ny + T - M + X5 - Ry +2g - by
subject to Ty Py + T P + X5 - Df + Tq - pa < 20 (17.1)
Ty Cyp+ Ty - Cn + Ty -y +2q - cqg < 1500
Note that here we avoid correlations between the four categories in our model and we consider a linear

model. This in particular means that our happiness from 100 grams of meat is independent of the dressing
and other ingrediants of the food.

17-1

17-2 Lecture 17: LP Applications — Linear Modeling, Planning, Optimization

In addition, observe that the solution of the above program is not necessarily integral; for example in the
optimal solution we may have to eat 2.5 grams of meat in a single day. We consider that being acceptable
in our model.

17.1.2 Example: Support Vector Machine

The Support Vector Machine (SVM) is a classical machine learning model for linearly separating data points
that belong to difference classes. Suppose we have m points z1,...,2,, € R? labeled “+” and n points
Y1,---,yn € R? labeled “~7. We want to find a linear separator (i.e. a hyperplane in R?) given by an
orthogonal vector w and an offset b, such that all of the points x1,...,z,, fall on one side of the separator
(given by the constraint that (w,z;) > b, i =1,...,m) and all of the points y1,...,y, fall on the other side
(given by (w,y;) <b, j =1,...,n). An example of such a set of points and a linear separator is given in
Figure 17.1.2.

T /|
//
. +|‘-f_i_ ++ //
| +F. x4 N + R4
++ + //
/7
4+ Vs
¥ af SRR 2 ’
+ ’
i /7
+ L
/7
. /7 -—
/ -—
’ - =
/7 - —
4 P i ok --
7/ e —_
’ - == =_
- / b~ e
,/ - - _—
P - -
N 4 ——)
’ ——
7
T T T T T T T T

Figure 17.1: Example of data points and linear separator.

It turns out that this corresponds to a simple linear programming problem:

Note that the above linear program has no objective function. It is just a feasibility problem. There are
many faster algorithms to solve the above problem that we are not going to discuss here, e.g., the Winnow’s
algorithm.

But the LP has many other advantages. Once we model a problem with a linear program we get to use more
complex constraints or objective functions. For example, in many real-world instances of the support vector
machine problem, a set of points may not be linearly separable, e.g., there could be some outliers. In this
case, we can allow some small amount of error. We can model this problem as follows:

Lecture 17: LP Applications — Linear Modeling, Planning, Optimization 17-3

w,b,e,d

m n
minimize Zei + Zéj
i=1 j=1
subject to (w,x;) >b—¢, i=1,...,m (17.2)

<wayj>§b+6ja j:L"'an
€,0; >0 Vi, j

Now any in general we may want want to minimize some norm of the error parameters. In the above we
minimize the L; norm. But it turns out that for a vector x € R™ any norm is convex. So, we my want to
use an Lo norm or any infinity norm in the objective function depending on the application.

17.2 Planning/Decision-making

Consider the decision-making problem of choosing whether to pursue a Ph.D. after college or take a job in
industry. Suppose we have a distribution X5 of the potential salaries when obtaining a job after having done
a Ph.D.; and a distribution X; for salaries without having done a Ph.D. Suppose there is also a probability
p of actually finishing a Ph.D. once it is started. We can reformulate the problem of deciding whether or not
to get a Ph.D. as choosing the action that maximizes our expected gain: in this case, an industry job would
lead to an expected gain of EX;, whereas pursuing a Ph.D. gives an expected gain of p-EX5 + (1 —p) -EX;
(where the second term arises from the fact that we can still get an industry job even without completing
the Ph.D.). If it is the case that EX; < p-EXs 4 (1 — p) - EX;, then our expected gain of getting a Ph.D.
is higher than getting an industry job, and going to grad school would be the optimal decision.

Markov Decision Processes Expanding on the previous section, let us define a model that consists of
a set of states and actions, where each action takes us from one state to another and gains some reward.
Specifically, if we are in state ¢ and take action a, then we will go to state j with probability P,(4,7) and get
a reward of R, (7, 7). This setup defines a Markov Decision Process (MDP). Given a probability distribution
for each pair of state/action, as well an associated reward function, we want to find an optimal policy that
will maximize the cumulative reward.

There are two main directions to model the objective function:

Finite Horizon We run our MDP for a finite number of steps T, with the total reward defined as the sum
of rewards across all time steps.

Infinite Horizon We run our MDP for an infinite number of steps, and the total reward is a discounted
version of the sum of rewards across all time steps, such that rewards gained further into the future
are discounted more.

17.2.1 Finite Horizon MDPs

Suppose we run our MDP for T steps and the rewards is the collective sum of the rewards for all steps. We
can find the optimal policy by dynamic programming.

For an state ¢ and time step 0 < ¢ < T, let V;(4), be the expected reward of an MDP that starts from state ¢
at timestep ¢ to time 7. Assuming we know the value of V;1(j) for all states j, we can define V; recursively
by choosing the action among all possible actions that maximizes our expected reward.

17-4 Lecture 17: LP Applications — Linear Modeling, Planning, Optimization

Firstly, observe that for any state 1,
Vr(i) = 0.

This is because at time T we stop the chain so there is no more rewards to be collected. For 0 <t < T and
state ¢ we can write,

Vi (i) = max > Pa(i, §) (Ra(i, 5) + Vi1 (§) = B(Vega)(i) (17.3)
J
Note that for an action a, the optimal expected reward if we take action a at state i at time ¢ is

ZPa(l7])(Ra(Zaj) + W—i—l(]))

Therefore, the optimal expected reward out of state 7 at time ¢ is obtained by an action a the maximizes the
above quantity (see (17.3)).

The function F that we defined in (17.3) is called the Bellman operator. Using this function, we can
recursively compute V; for all states and all time steps T'— 1,7 —2,...,1,0 in that order, relying on the fact
that Vp = 0. In other words, we apply the Bellman operator, B, T' times, to obtain Vj,

Vo = B(B(...B(0))) (17.4)
—_———

T times

Where we used that Vi = 0.

To determine the optimal policy, we can simply replace the max on the right-hand side with an argmax.
That is if we are at state i at time ¢ we choose an action a which maximizes > Po (i, j)(Ra (4, j) + Vit1(4))-

The above algorithm takes (computation) time O(Tn?|A|) to calculate Vy assuming that the chain has a
total of n states and |A| actions. Observe that this grows linearly with 7', which is not ideal as computing
all values for a very long sequence of steps would be computationally expensive.

17.2.2 Infinite Horizon

In this case, we assume the MDP runs for 7' = oo steps, and our total reward is now discounted by a rate
~v < 1. Specifically, for every time step in the future that a reward is gained, it is multiplied by a factor
of 7, so that a reward gained ¢ steps into the future is scaled by 4. This can be thought of as adjusting
for inflation, since rewards gained in the future are not worth as much as a reward gained at the current
time step. Now, observe that since v < 1 the collective rewards is always finite. A natural approach is to
reduce this problem to the finite horizon case; intuitively by time ¢ > mll_ﬂ the discount is so huge that
the collective reward is negligible from that time on. So, we just need to solve the finite horizon case for
T = O)((l —7)~1). Unfortunately for v very close to 1, T is very large, and the algorithm is impractical.
So, our idea is to use linear programming to find the optimal policy.

Firstly, suppose we apply discounting to the Finite Horizon case; then, we can write the corresponding
Bellman operator as follows:

Vi (i) = max ZPa(iJ) [Ra(i,5) + 7Vit1(5)] = By (Vit1)(4) (17.5)

In other words, the optimal policy can be obtained by applying the B, operator an infinite number of times
on the zero vector, i.e., the optimal reward is

oo times

Lecture 17: LP Applications — Linear Modeling, Planning, Optimization 17-5

Note that in the above equality it does not matter that we start from the 0 vector. If we start from any
arbitrary vector V', we have
By(By(...(V))...)=V"
oo times

This is because the starting reward vector will be scaled down by v*° = 0.

Here is the important observation about the optimal policy in the infinite Horizon case. Let V;*(¢) be the
optimal expected reward when we start at state i at time ¢. We claim that for all 4, ¢, V;*(i) = V;* ;(4). This
is because no matter when we start the chain, we will always run for an infinite number of steps. It follows
from this observation that the optimal reward, V*, is constant across all times; furthermore, for each state
¢ (and any time t) the optimum action is an action a where

V(@) = 3 Palis))(Ralis) + V()

Having this in mind, we claim that the following linear program gives the optimum expected reward at any
state i.
V > By(V) (17.6)

In the above program, the constraint V' > B, (V') is indeed a vector constraint; so in particular, for any state
1 we have a constraint

V(@) Z max Y Palis) [Ra(i,) + 2V ()]

Note that this is a feasibility program, as there is no objective function. In our main theorem we show that
any feasible solution of the program is the optimum policy. Also, observe that maximum of linear functions
is a convex function and we can upper bound a convex function. In this particular case we can implement
the above convex program by a linear program by simply having the following inequality for every possible
action a,

V(i) 2 30 Pl DRalid) + 7V)

We prove the following theorem

Theorem 17.1. The optimal solution of (17.6) gives the expected rewards of the optimal policy.

First recall that since V* = B, (V*), V* is a feasible solution of the linear program. So, indeed we wanted
to write the constraint V' = B, (V') in the LP. But this is not a convex constraint.

We use the following fact to prove the theorem.

Fact 17.2. If U >V, then B,(U) > B, (V)

Proof. Based on its definition, B, is a monotone operator. This means that if the value of V is increased
for every state 4, B, (V') can only increase in value. Since U > V element-wise for every state, this implies
that B,(U) > B, (V). O

Using these two facts, we can now prove Theorem 17.1:

Proof of Theorem 17.1. Let V be a feasible solution to the linear program given in (17.6), so that V' > B, (V).
By Fact 17.2, we have
By (V) = By(By(V))

17-6 Lecture 17: LP Applications — Linear Modeling, Planning, Optimization

By another application of Fact 17.2 to the above inequality we have
By(By(V)) 2 By(B,(B,(V))).
Following this line of reasoning we get,
V> B,(V) = By(B,(V) > -+ = BR(V) = V*

This means that V' > V*. But since V* is the optimum reward, all of the above inequalities indeed must be
equalities. 0

	Linear Modeling
	Example: Diet Problem
	Example: Support Vector Machine

	Planning/Decision-making
	Finite Horizon MDPs
	Infinite Horizon

