
CSE 521: Design and Analysis of Algorithms I Fall 2025

Lecture 13: Spectral Graph Theory
Lecturer: Shayan Oveis Gharan 11/09/25

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

13.1 Spectral Graph Theory

In the field of spectral graph theory we relate combinatorial properties of graphs to their algebraic properties.
Combinatorial properties of a graph G can refer to whether it is connected, its diameter, its spanning trees,
etc. Algebraic properties refer eigenvalues/eigenvectors of Adjacency matrix (A), Laplacian matrix (L),
Random Walk matrix P , etc.

Here are some known results from Spectral Graph Theory are shown below:

Theorem 13.1.

λ2(L) = 0 ⇐⇒ G is disconnected

The theorem shows a very nice connection between a combinatorial property of a graph and an algebraic
property of its matrices. Namely, we can test whether a given graph is connected without running any graph
search algorithm, include BFS or DFS. All we need to do is to test if the second eigenvalue of Laplacian
matrix is nonzero. In the future lectures we see efficient algorithms to approximately compute the second
eigenvalue of the Laplacian matrix.

Theorem 13.2. For all k ≥ 2,

Diam(G) ≤ k log n

λk(L̃)

This theorem specifies a relationship between the diameter of G and the eigenvalues of its Normalized
Laplacian matrix L̃. The Normalized Laplacian Matrix will be defined later in the lecture.

Theorem 13.3. For any graph G,

det(L+
11T

n
) = # of spanning trees

where 1 is the all ones vector.

This theorem specifies that the determinant of the Laplacian of G with 11/n added to the value of every
cell, is equal to the number of spanning trees of G. Note that in general a graph may have an exponential
number of spanning trees, but since the determinant of any matrix can be computed efficiently, the above
theorem gives an efficient algorithm to count the number of spanning trees of a given graph G.

Today we will specifically be focusing on the Laplacian and Normalized Laplacian, and how they relate to
spectral clustering.

13-1



13-2 Lecture 13: Spectral Graph Theory

13.1.1 Laplacian Matrix

Definition 13.4 (Laplacian Matrix). Given G = (V,E) a weighted graph G, where every edge (i, j) has
weight wi,j. Consider the weighted adjacency matrix where for every edge (i, j)

Ai,j = Aj,i = wi,j ,

and the rest of the entries are zero. Also, let D be the diagonal matrix of vertex (weighted) degrees; that is
for each vertex i,

Di,i = dw(i) =
∑
j∼i

wi,j

The Laplacian matrix of G
LG = D −A.

In other words, it has degrees on the diagonal and the off-diagonal entries Li,j is −wi,j if there is an edge
and 0 otherwise.

For unweighted graph G, the quadratic form of LG is

xTLGx = xT (D −A)x

=
∑
i

d(i)x2
i −

∑
i∼j

xixj

=
∑
i

d(i)x2
i − 2

∑
i∼j:i<j

xixj =
∑
i,j∈G

(xi − xj)
2

Similarly for a weighted graph:

xTLGx =
∑
i,j∈G

wi,j(xi − xj)
2 ≥ 0 (13.1)

Then the following fact is immediate.

Fact 13.5. For any (weighted) graph G, LG is a PSD matrix, LG ⪰ 0

Proof. By variational characterization of eigenvalues (see Lecture 8, section 2), LG’s minimum eigenvalue is

λmin(LG) = min
x

xTLGx

xTx
= min

x

∑
i∼j(xi − xj)

2

xTx
≥ 0.

where we used that the numerator is always nonnegative.

Fact 13.6. λmin(LG) = 0

Proof. Let x = 1⃗ be the all ones vectors. Then,∑
i∼j

(xi − xj)
2 =

∑
i∼j

(1− 1)2 = 0.

Since by Fact 13.5, yTLGy ≥ 0 for any vector y, by variational characterization of eigenvalues, the smallest
eigenvalue of LG is zero.

In the rest of this section we prove Theorem 13.1. The following two claims imply what we need.

Claim 13.7. G is disconnected =⇒ λ2 = 0
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Proof. Since G is disconnected, we can split it into two sets S and S such that |E(S, S)| = 0. Let

x =
1S

|S|
− 1S

|S|

where as usual 1S represents the indicator of S.

The quadratic form of L implies that xTLx = 0, as all neighboring vertices were assigned the same weight
in x. We now show that x is orthogonal to the first eigenvector 1.

⟨x,1⟩ =
∑

xi1i =
∑
i∈S

1

|S|
−

∑
i∈S

1

S
= 0

Therefore λ2 = 0.

Claim 13.8. λ2 = 0 =⇒ G is disconnected

Proof. First, by the quadratic form,
λ2 = 0 =⇒ ∃x ⊥ 1 s.t.

xTLx =
∑
i∼j

(xi − xj)
2 = 0 ⇐⇒ (xi − xj)

2 = 0 ∀i ∼ j

For the sake of contradiction suppose G is connected. Then, (xi − xj)
2 = 0 ∀i ∼ j holds true only if

xi = xj ∀i, j. However, we know that:

x ⊥ 1 : ⟨x, 1⟩ =
∑
i

xi = 0

So x is not a constant vector, i.e., ∃i, j : xi ̸= xj Therefore we have a contradiction and G must be
disconnected.

13.2 Graph Partitioning

We will now talk about graph partitioning. What are we actually looking for by partitioning a graph? If a
graph comes from data points, and edges represent their similarity, then we may be partitioning it to find
clustered data. If the graph comes from a social network where edges represent friendships, then we may be
partitioning it to find communities of friends.

13.2.1 Graph Partitioning Objectives

In Computer Science, whether or not a partitioning of a graph is a ’good’ partitioning depends on the value
of an objective function, and graph partitioning is an optimization problem intended to find a partition
that maximizes or minimizes the objective. The appropriate objective function to use depends on where the
graph came from and what we are trying to find.

Some examples of objective functions are given below:

Definition 13.9 (Diameter). The diameter of a graph refers to the maximum of the shortest paths between
all pairs of vertices in the graph. When using this objective function, the goal is to find the partitioning where
the partitions have the smallest possible diameters, which implies some level of ’closeness’ between vertices
in the partition.
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Definition 13.10 (Clustering Coefficient:). Count the number of triangles in G. The number of triangles in
a graph is useful as an objective when trying to partition social networks, as within a community we expect
friends of friends to also be friends.

Definition 13.11 (Conductance). Given a graph G = (V,E) with the vertices partitioned into (S, S), the
conductance of partition S is defined as:

ϕ(S) =
|E(S, S)|
vol(S)

where the volume of a partition is defined as the sum of the degrees of vertices in that partition:

vol(S) =
∑
i∈S

d(i)

The above definition naturally extends to weighted graphs. Say G is weighted, and the weight of the edges
connecting i to j is wi,j . Then,

ϕ(S) =
w(S, S

volw(S)
=

∑
i∼j:i∈S,j /∈S wi,j∑

i∈S dw(i)
,

where dw(i) =
∑

j∼i wi,j is the weighted degree of i.

13.2.2 Conductance

Conductance has the property that 0 ≤ ϕ(S) ≤ 1, with value 0 when all edges of vertices of S stay within
S, and a value of 1 when all edges of vertices of S go to vertices in S. In general we want to find partitions
with small conductances.

An intuitive reason why we would want this, going back to the community finding example, is that if a
community has a small conductance there are many more friendships within a community than between
members of the community and people from outside of the community.

As S = V =⇒ ϕ(S) = 0, in order to find the best partitioning according to conductance we look for S with
the smallest conductance such that vol(S) ≤ 1

2vol(V ), and define the conductance of the best partitioning
of G to be:

Definition 13.12.
ϕ(G) = min

vol(S)≤vol(V )/2
ϕ(S)

For a cycle of n vertices, the smallest conductance partitioning occurs when its left and right halves are
separate partitions, and it has conductance ϕ(S) = 2

n .

For a complete graph with n vertices the best partitioning occurs when the graph’s vertices are partitioned
into two equal halves, and it has conductance ϕ(S) = 1

2 . In an intuitive sense this means that unlike a cycle,
a complete graph is not partitionable.

13.3 Approximating ϕ(G): Sparsest Cut Problem

There are three well known algorithms for finding a partition that has a conductance close to ϕ(G).

Spectral Partitioning finds a partition S such that ϕ(S) ≤ 2
√
ϕ(G)
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Linear Programming finds a partition S such that ϕ(S) ≤ O(log n)ϕ(G)

Semi-Definite Programming (SDP) finds a partition S such that ϕ(S) ≤ O(
√
log n)ϕ(G)

Finding an algorithm with an approximation factor better than O(
√
log n) remains one of the big open

problems in the theory of algorithm design. Here we will only be discussing Spectral Partitioning, but the
Linear Programming algorithm is covered in the Random Algorithms class.

We will shortly describe the Spectral Partitioning algorithm, but to do so we must first define the Normalized
Laplacian Matrix.

Definition 13.13 (Normalized Laplacian Matrix). Given a graph G, the normalized Laplacian matrix is
defined as follows:

L̃ = (D− 1
2LD− 1

2 )i,j =
Li,j√
didj

= I −D− 1
2AD− 1

2

Recall that D is the Degrees matrix, and D− 1
2AD− 1

2 is the Normalized Adjacency matrix.

The Normalized Adjacency matrix also has the property that:

eig val (D− 1
2AD− 1

2 ) = eig val (P )

Where P is the Random Walk matrix. Additionally, the first eigenvector of L̃ is D1/21.

With these definitions in place, we are now ready to describe the Spectral Partitioning Algorithm.

Algorithm 1 Spectral Partitioning Algorithm

Let x be the 2nd smallest eigenvector of L̃
Sort the vertices (rename them) such that:

x1√
d1

≤ x2√
d2

≤ · · · ≤ xn√
dn

for i = 1 → n do
Let S = {1, . . . , i}.
Compute ϕ(S).

end for
Return the minimum conductance among all sets S in the loop where vol(S) ≤ vol(V )/2.

The sweep across the partitions in the algorithm can be computed in O(|E|), by incrementally computing
the conductance of each partition by updating the previously computed conductances with the edges of the
newest vertex.

The challenging part of this algorithm is finding the 2nd smallest eigenvector. The next lecture will show
that approximating the 2nd eigenvector is sufficient, turning this into an approximate algorithm for finding
the partitioning that runs in near linear time.

Note that everything we described so far naturally extends to weighted graphs, and the above algorithm can
also be used to find a sparse cut of a weighted graph.

13.3.1 Cheeger’s Inequality

The following theorem is one of the fundamental inequalities in spectral graph theory.
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Theorem 13.14 (Cheeger’s Inequality). For any graph G,

λ2/2 ≤ ϕ(G) ≤
√
2λ2

where λ2 is the 2nd smallest eigenvalue of L̃.

Cheeger’s inequality relates the combinatorial property of conductance to a spectral property, the 2nd small-
est eigenvalue. Observe that in the extreme case where λ2 = 0, we also have ϕ(G) = 0 and vice versa. We
have already seen the proof of this in Claim 13.7 and Claim 13.8.

A crucial fact about the above inequality is that it does not depend on the size of G, n. It implies that if G
has a “small” 2nd eigenvalue, then it is partitionable, whereas if the 2nd eigenvalue is “large” the graph is
similar to a complete graph and it is not partitionable.

The proof of the right side of Cheeger’s inequality, ϕ(G) ≤
√
2λ2 is constructive, and it shows that the

spectral partitioning algorithm always returns a set S such that vol(S) ≤ vol(V )/2 and

ϕ(S) ≤
√

2λ2 ≤
√

4ϕ(G).

Both sides of Cheeger’s inequality are tight. The right side is tight for a cycle and the left side is tight for
the hypercube. We will talk more about Cheeger’s inequality in the next lecture.

13.4 Expander Graphs

Let G = (V,E) be a d-regular graph. Recall that G is d regular if the degree of all vertices of G is exactly
equal to d. Let L̃ = L/d be the normalized Laplacian matrix of G with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

We say G is a (weak) expander if λ2 ≥ Ω(1), i.e., λ2 is bounded away from 0; it is an absolute constant
independent of the size of G. In general, this definition can be a bit confusing because for a fixed graph the
number of vertices is a constant and λ2 will also be a fixed constant. So, a more rigorous definition is the
following: An infinite sequence G1, G2, . . . , of d-regular graphs where the size goes to infinity is a sequence
of expander graphs if there exists c > 0 such that for all i the second smallest eigenvalue of the normalized
Laplacian of Gi is at least c.

Expander graph can be seen as sparse version of the complete graph. Let G = (V,E) be an expander graph
(with n vertices). Then it has the following properties:

i) The diameter of an expander graph is O(log n). In particular, for any pair of vertices i, j of G, the
shortest path connecting i to j has length at most O(log n).

ii) ϕ(G) ≥ Ω(1). Recall that by Cheeger’s inequality ϕ(G) ≥ λ2/2. So, since λ2 ≥ Ω(1), ϕ(G) ≥ Ω(1).
Therefore, for any set S such that vol(S) ≤ vol(V )/2, ϕ(S) ≥ Ω(1). In other words, a constant fraction
of edges incident to vertices of S leave the set S. That in a sense means that G is unclusterable. Note
that there are expander graphs with d = 3. These graphs are locally very sparse; every vertex has only
3 neighbors. Nonetheless, globally, there are very connected. If we want to break the network into two
sets of almost equal size we have to cut a constant fraction of edges of G.

iii) Random walks mix rapidly in expander graphs. A simple random walk on an (undirected) graph G is
defined as follows: Given a vertex v move to a uniformly random neighbor of v. It follows that if G is
an expander, then a random walk started at an arbitrary vertex of G will be at an (almost) uniformly
random vertex of G at time O(log n). In other words, the walk completely forgets where it has started
from.
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For the sake of comparison note that a cycle of length n has none of the above properties. It has diameter
n and the random walk started at vertex 0 takes time O(n2) to be at a uniformly random vertex of it.

We say that a graph G is a strong expander if λ2 ≥ 1−O(1)/
√
d. The best bound that we can hope for is

λ2 ≥ 1− 2
√
d− 1

d
.

These family of graphs are called Ramanujan and they are the best expanders that we can hope for. It turns
out that these graphs are not very rare, as a random d regular is almost Ramanujan with high probability,
this is a result due to Friedman.

Expander mixing lemma shows that strong expanders are very similar to d regular graphs, in the following
sense: Let G be a strong d-regular strong expander and let H be a graph where for every pair i, j of vertices
there is an edge connecting i to j with probability d/n. Then, for any two disjoint sets S, T of vertices of
size |S|, |T | ≥ Ω(n), the number of edges between S, T in G and H are almost the same. See Problem 2 of
PS4 for the exact statement.

Another important fact about expander graphs is that many NP-hard optimization problems become easier
on expander graphs in the sense that we can design algorithms with significantly better approximation
factors if the underlying graph is an expander. We see one such example in Problem 2 of PS4. But the
general fact follows from the expander mixing lemma: Expander graphs are similar to random graphs and
complete graphs. Many problems such as max cut, min conductance cut, etc. are easier on random graphs
and complete graphs and henceforth they are easier on expander graphs. For a concrete example, note that
since λ2 ≥ Ω(1) in an expander graphs, and by Cheeger’s inequality, λ2/2 ≤ ϕ(G) ≤

√
2λ2, we can obtain a

constant factor approximation algorithm for ϕ(G) if G is an expander simply by outputing λ2 as an estimate
of ϕ(G). This is despite the fact the best known approximation algorithm for ϕ(G) in general graph is an
O(

√
log n) approximation algorithm of Arora, Rao and Vazirani [ARV09].
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