1) A probability distribution \(D_p \) over \(\mathbb{R} \) is said to be \(p \)-stable if for \(Z, Z_1, \ldots, Z_n \) independently drawn from \(D_p \) and for any fixed \(x \in \mathbb{R}^n \), the random variable \(\sum_{i=1}^n x_i Z_i \) is equal in distribution to \(\|x\|_p \cdot Z \). Some examples are the standard normal distribution \(N(0,1) \), which is 2-stable. Another less-known example is the Cauchy distribution, which is 1-stable; it has probability density function \(\Phi(x) = 1/(\pi(1+x^2)) \). It is a known theorem that such distributions exist iff \(p \in (0, 2] \). Note that \(p \)-stable random variables for \(p \neq 2 \) cannot have bounded variance, since otherwise the sum of independent copies would have to be gaussian by central limit theorem. In fact, it is known that any \(p \)-stable have \textbf{bounded and continuous} density function and they must have tail bounds \(P(\|Z\| > \lambda) = O(1/(1+\lambda)^p) \) for all \(\lambda > 0 \). This implies that such distributions cannot exist for \(p > 2 \) (since otherwise they would have bounded variance, violating the central limit theorem).

a) Suppose \(Z \) is \(p \)-stable; show that for any \(\alpha > 0 \), \(\alpha Z \) is also \(p \)-stable.

b) Let \(Z \) be a \(p \)-stable random variable normalized (by a constant) so that \(P[Z \in [-1,1]] = 1/2 \) (see previous part). Fix some \(\epsilon > 0 \). Show that there is a constant \(c > 0 \) (as a function of \(\epsilon, p \) such that
\[
\mathbb{P}[-1 + \epsilon < Z < 1 - \epsilon] \leq 1/2 - c \epsilon,
\]
\[
\mathbb{P}[-1 - \epsilon < Z < 1 + \epsilon] \geq 1/2 + c \epsilon.
\]

c) Let \(P \in \mathbb{R}^{m \times d} \) where \(P_{i,j} \) is an independent sample of \(Z \). Let \(x \in \mathbb{R}^d \) arbitrary and \(y = Px \); show that for \(m = O(\log(1/\delta)/\epsilon^2) \), with probability at least \(1 - \delta \), the median of \(|y_1|, \ldots, |y_m| \) is a \(1 \pm \epsilon \) multiplicative approximation of \(\|x\|_p \).

d) Implement the algorithm in the previous part and use it to estimate the \(\|x\|_1 \) of the vector \(x \) given in the p4.in file in the website (will upload soon). Insert your code together with the value of \(m \) and \(\epsilon \) that you use, \(\|x\|_1 \) and the output of your code.

\textbf{Note:} Although we are not going to discuss it here, this idea can be used together with a family of \(k \)-wise independent hash functions to design streaming algorithm with poly-log memory to estimate the \(p \)-norm for \(p < 2 \).

2) In this problem we design an LSH for points in \(\mathbb{R}^d \), with the \(\ell_1 \) distance, i.e.
\[
d(p,q) = \sum_i |p_i - q_i|.
\]

a) Let \(a, b \) be arbitrary real numbers. Fix \(w > 0 \) and let \(s \in [0, w] \) chosen uniformly at random. Show that
\[
\mathbb{P} \left[\frac{a-s}{w} = \left\lfloor \frac{b-s}{w} \right\rfloor \right] = \max \left\{ 0, 1 - \left\lfloor \frac{|a-b|}{w} \right\rfloor \right\}.
\]
Recall that for any real number \(c \), \(\lfloor c \rfloor \) is the largest integer which is at most \(c \).

\textbf{Hint:} Start with the case where \(a = 0 \).

b) Define a class of hash functions as follows: Fix \(w \) larger than diameter of the space. Each hash function is defined via a choice of \(d \) independently selected random real numbers \(s_1, s_2, \ldots, s_d \), each uniform in \([0, w)\). The hash function associated with this random set of choices is
\[
h(x_1, \ldots, x_d) = \left(\left\lfloor \frac{x_1 - s_1}{w} \right\rfloor, \left\lfloor \frac{x_2 - s_2}{w} \right\rfloor, \ldots, \left\lfloor \frac{x_d - s_d}{w} \right\rfloor \right).
\]
Let $\alpha_i = |p_i - q_i|$. What is the probability that $h(p) = h(q)$ in terms of the α_i values? For what values of p_1 and p_2 is this family of functions $(r, c \cdot r, p_1, p_2)$-sensitive? Do your calculations assuming that $1 - x$ is well approximated by e^{-x}.