CSE 521: Design and Analysis of Algorithms

Fall 2022

Problem Set 5

Deadline: Dec 9th in gradescope

- 1) We say a *d*-regular graph G is an ϵ -expander if $\sigma_2(A/d) \leq \epsilon$, where A is the adjacency matrix of G.
 - a) Given a d-regular ϵ-expander G with n vertices prove that for every set S ⊆ V of size |S| ≤ ϵ²n, |N(S)| ≥ |S|/cϵ² for some universal constant c (independent of n or |S|).
 Hint: In this part you can use the following expander mixing lemma:
 Theorem: Let G be a d-regular. Then, for any two sets S, T we have

$$|E(S,T) - d \cdot \frac{|S| \cdot |T|}{n}| \le \sigma_2(A)\sqrt{|S| \cdot |T|}$$

where |E(S,T)| is the number of edges between S and T (counting edges contained in the intersection of S and T twice). In other words, the above theorem implies that the number of edges between S, Tis almost the same as the number of such edges in a random d-regular graph.

- b) It can be shown that a random *d*-regular graph is with high probability a $\frac{2}{\sqrt{d}}$ -expander. Use the previous part to show that in such a graph there are $\Omega(n)$ vertices at shortest path distance at most $O(\log_d n)$ of any vertex $v \in V$.
- 2) Consider the following job scheduling problem: We have a set of m machines M_1, \ldots, M_m and a set of n jobs J_1, \ldots, J_n . For each job J_j we are given a set S_j of machines that can execute this job. It takes t_j seconds to run this job (on any machine) and this job must be run continuously (with no preemption) on a single machine. The load of a machine is the sum of length of all jobs executed on that machine. The goal is assign these jobs to all machines to minimize the maximum load among all machines.
 - a) Let $0 \le x_{i,j} \le t_j$ be the fraction of job J_j that is executed on the machine M_i . Write a linear programming relaxation for this problem using these variables. Show that if all variables $x_{i,j}$ are restricted to be in $\{0, t_j\}$ then the optimum solution of your program is equal to the optimum solution of the problem.
 - b) Extra Credit: Let x^* be the optimum vertex solution of this linear program. Construct a bipartite graph G(M, J) with one side corresponding to all jobs and the other side corresponding to all machines where a job J_j is connected to a machine M_i if $x_{i,j}^* > 0$. Prove that this graph is acyclic.
 - c) Use the result of the previous part to run the following rounding algorithm: Since G(M, J) is acyclic it is a forest; make each connected component of G rooted at some machine. Assign every leaf job to its unique parent. Assign every non-leaf job to one of its children arbitrarily. Prove that this gives a 2-approximation algorithm.