Problem Set 4

Deadline: Nov 25th in Canvas

1) In this problem we better understand PSD matrices.
a) Prove or disprove: If $A \in \mathbb{R}^{n \times n}$ is a PSD matrix then $A_{i, i} \geq 0$ for all $1 \leq i \leq n$.
b) Prove or disprove: If $A \in \mathbb{R}^{n \times n}$ is a PSD matrix, ten $A_{i, j} \geq 0$ for all $1 \leq i, j \leq n$.
c) For a vector $u \in \mathbb{R}^{n}$, we write $u \otimes u$ to denote the vector in $\mathbb{R}^{n^{2}}$ where for any $1 \leq i, j \leq n$, $(u \otimes u)_{i n+j}=u_{i} \cdot u_{j}$. Show that for any pair of vectors $u, v \in \mathbb{R}^{n}$,

$$
\langle u \otimes u, v \otimes v\rangle=\langle u, v\rangle^{2}
$$

d) Let $A \in \mathbb{R}^{n \times n}$ be a PSD matrix, and let $B \in \mathbb{R}^{n \times n}$ be the matrix where $B_{i, j}=A_{i, j}^{2}$. Prove that B is PSD.
Hint: Use part (a) and that any matrix A is PSD iff it can be written as $A=C C^{\top}$ for some matrix $C \in \mathbb{R}^{n \times k}$, for some integer k.
e) Extra Credit: Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ be a set of points of norm 1. For $\sigma>0$, let $G_{\sigma} \in \mathbb{R}^{n \times n}$ be the Gaussian kernel on P, i.e.,

$$
G_{\sigma}(i, j)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\left\|p_{i}-p_{j}\right\|^{2} / 2 \sigma}
$$

Prove that $G_{\sigma} \succeq 0$.
2) Let $A \in \mathbb{R}^{m \times n}$ and suppose we want to estimate $A v$ for a vector $v \in \mathbb{R}^{n}$. Here is a randomized algorithm for this task. Choose the i-th column of A, A_{i}, with probability

$$
p_{i}=\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}
$$

and let $X=A_{i} v_{i} / p_{i}$. Show that $\mathbb{E}[X]=A v$. Calculate $\operatorname{Var}(X)=\mathbb{E}\left[\|X\|^{2}\right]-\|\mathbb{E} X\|^{2}$. Suppose, in preprocessing, we have calculated p_{1}, \ldots, p_{n} and we have made an array $b[]$ where $b[i]=p_{1}+\cdots+p_{i}$ for all $1 \leq i \leq n$. This should help you to generate a random column in time $O(\log n)$. Design an algorithm that for a given $\epsilon>0$ and $v \in \mathbb{R}^{n}$ runs in time $O\left(m \frac{\log (n)\|A\|_{F}^{2}}{\epsilon^{2}\|A\|^{2}}\right)$ and outputs a vector $y \in \mathbb{R}^{m}$ such that with probability at least $9 / 10$

$$
\|A v-y\| \leq \epsilon\|A\|\|v\|
$$

Note that if A has a few large eigenvalues and many small eigenvalues, then we can estimate $A v$ in linear time as opposed to quadratic time using your algorithm.
3) In this part implement to following heuristic to find the hidden partition problem: You are given a graph $G=(V, E)$ with adjacency matrix A with $n=400$ vertices. The graph is stored in the file "hidden1.in". Let D be a degree matrix where $D_{v, v}=d(v)$ is the degree of a vertex v. Then $\tilde{A}:=D^{-1 / 2} A D^{-1 / 2}$ is called the normalized adjacency matrix of G. Let x be the second largest eigenvector of \tilde{A}; find the median of values in x and output vertices below the median as one community and the rest as the other. This graph is constructed with $p=0.65$ and $q=0.05$. The true partition is in the file "hidden1.out". Compare your output with the true hidden partition and report how many misplaced vertices are there in your output.

