1) We would like to find an approximate median of \(n \) distinct integers in sublinear time. To do so, we down-sample \(m \ll n \) numbers, and output the median \(c \) of these \(m \) numbers. Let the sorted list of the given \(n \) numbers be \(\{x_1, x_2, \ldots, x_n\} \) and so the true median is \(x_{n/2} \). The approximate median is said to be a \(\pm k \)-approximation if \(c \in \{x_{n/2-k}, \ldots, x_{n/2+k}\} \). Suppose we want to design an algorithm that succeeds to find a \(\pm cn \)-approximation with probability at least \(1 - \delta \). How large should \(m \) and what would be the running time of the algorithm? Prove your claim. You can assume one can find the median of \(m \) numbers in time \(O(m) \).

\textbf{Hint:} Try to get a bound that is only logarithmically dependent on \(1/\delta \).

2) Recall a set of vectors \(v_1, \ldots, v_n \in \mathbb{R}^d \) are linearly independent if for any set of coefficients \(c_1, \ldots, c_n \in \mathbb{R} \), \(c_1 v_1 + \cdots + c_n v_n \neq 0 \).

The \(\text{rank}(A) \) of a matrix \(A \) is the maximum number of linearly independent columns of \(A \); it is also equal to the maximum number of linearly independent rows of \(A \). We say an \(n \times n \) matrix \(A \) is \textit{nonsingular} if \(\text{rank}(A) = n \). It can be shown that for any matrix \(A \), \(\text{det}(A) \neq 0 \) if and only if \(A \) is nonsingular. Let \(G = (X, Y, E) \) be a given bipartite graph with \(|X| = |Y| = n \). Using the above terminology, we can rewrite the algorithm that tests whether \(G \) has a perfect matching as follows: For each edge \(x_i, y_j \) of \(G \), choose \(A_{i,j} \) uniformly and independently from the set \(\{0, 1, \ldots, n^k\} \), and let the rest of entries of \(A \) be 0. Return yes if \(\text{rank}(A) = n \) and no otherwise.

a) Let \(A \) be the following matrix: For each nonadjacent pair \(x_i, y_j \), let \(A_{i,j} = 0 \); choose the rest of the entries of \(A \) arbitrarily. Use properties of the rank and determinant to show that if \(\text{rank}(A) = k \), then \(G \) has a matching of size at least \(k \).

b) Design a randomized algorithm to compute the size of the maximum matching of \(G \). Can you upper bound probability of failure of your algorithm? In your algorithm assume that you can compute the rank of a matrix in polynomial time.

\textbf{Hint:} Use Schwartz-Zippel lemma to argue that with high probability \(\text{rank}(A) \) is at least the size of the maximum matching of \(G \) then use part (a) to finish the proof.

3) Given a graph \(G \) with \(n \) vertices, let \(A \) be the adjacency matrix of \(G \) and let \(\lambda_1 \) be the largest eigenvalue of \(A \).

a) Use definition of eigenvalues \((Av = \lambda v) \) to show that \(\lambda_1 \leq \max_v d(v) \), i.e., \(\lambda_1 \) is at most the largest degree of vertices of \(G \).

b) Use Rayleigh quotient to show that \(\lambda_1 \geq \frac{\sum_v d(v)}{n} \).

3-1