
CSE 521: Design and Analysis of Algorithms I Fall 2021

Lecture 7: Curse of Dimensionality, Dimension Reduction
Lecturer: Shayan Oveis Gharan Oct 20st

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

High dimensional vectors appear frequently in recent development in CS, examples of which are user-movie
ratings of netflix, DNA strings of patients, and images pixel values. In this lecture we study higher dimensions
geometry and see how randomization help us to design algorithm. We first start with a few definitions, then
we discuss several properties of high dimensional geometry, and finally we investigate a way to map points
from high dimensions to a low dimensional space preserving the `2 distances.

7.1 Introduction

Definition 7.1. For a vector v ∈ Rd, `2 norm of v is defined ‖v‖2 =
√∑

i vi, and `∞ of v is defined
‖v‖∞ = maxi |vi|.

Definition 7.2. A d dimensional `2 ball is defined as B2(c, r) = {(x1, · · · , xd) : ‖x− c‖2 ≤ r}, and similarly
a d dimensional `∞ ball is B∞(c, r) = {x : ‖x− d‖∞ ≤ r}. Note that an `∞ ball is just a d-dimensional
cube. It can also be seen that a d-dimensional `1 ball is a simplex.

In geometry, diameter of a circle is any line segment that passes through the center of the circle. And for
a square it’s the line segment that connects two opposite vertices. In more general form, the diameter of
a shape (a set of points) is the supremum of distances between every two points in that set, supx,y d(x, y).

The diameter of a d dimensional ball is always 2, and the diameter of a d dimensional cube is 2
√
d, which is

the distance between (1, 1, · · · , 1) and (−1,−1, · · · ,−1).

Volume is a notion for the size of a shape D, and is formally defined as
∫
D

1dD where the integration is with

respect to the Lebesgue measure. Volume of a d dimensional ball is π
d
2

( d2 )!
, and volume of a d dimensional

cube is 2d. It is interesting to observe even though a 2-dimensional ball covers most of the area of a 2-
dimensional cube (see Figure 7.1), the ratio of the volumes of the in d dimensions is exponentially small in

d, Val(B2(0,1))
Val(B∞(0,1)) = 1

eΩ(d) . In other words, as d grows, the ball gets exponentially smaller than the cube.

Theorem 7.3. Val(B2(0,1))
Val(B∞(0,1)) = 1

eΩ(d)

To estimate this ratio we use the Monte Carlo method. We choose a uniformly random point in B∞(0, 1)
and we compute the probability that this point lies inside the `2 ball B2(0, 1). First, observe that to choose
a uniformly random point in the cube it is enough to choose x1, . . . , xd independently and uniformly in the
range [−1, 1].

Now, such a point x lies in the `2 ball if and only if
∑
i x

2
i ≤ 1. So, we need to compute

P

[∑
i

x2
i ≤ 1

]
.

We use the Hoeffding’s inequality to bound the above quantity. First recall that for X1, . . . , Xd independently

7-1



7-2 Lecture 7: Curse of Dimensionality, Dimension Reduction

chosen in the range [a, b], the Hoeffding’s inequality implies

P

[∣∣∣∣∣∑
i

Xi − E
∑
i

Xi

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2

d(a− b)2

)
. (7.1)

Now, let Xi = x2
i . First, observe that

E [X]i =

∫ 1

t=−1

t2/2 =
t3

6

∣∣∣1
−1

= 2/6 = 1/3.

Also, observe that Xi ∈ [0, 1]. Therefore, by (7.1)

P

[∑
i

Xi ≤ 1

]
≤ P

[∣∣∣∣∣∑
i

Xi − E
∑
i

Xi

∣∣∣∣∣ ≥ d/3− 1

]
≤ 2 exp

(
2(d/3− 1)2

d(1− 0)2

)
= e−Ω(d)

as desired.

7.2 Near Orthogonal Vectors

In Rd, the maximum number of vectors that you can find such that each pair of them are orthogonal to each
other is exactly d. One example of such vectors set is the standard basis vectors, e1, . . . , ed where for each
i, ei is the vector

eij =

{
1 if j = i

0 otherwise.
(7.2)

In this section we want to study the maximum number of vectors one can choose in Rd such that the angle
between each pair of them is close to 90◦ (say a number between 88◦ and 92◦)? For d = 2, the answer is still
2, but we are going to show that in Rd we can choose exponential in d many vectors such that each pair of
them are almost orthogonal.

Theorem 7.4. ∃v1, · · · , vm ∈ Rd where m ≥ eΩ(d), such that ∀i, j : ∠vi, vj ≈ 90◦.

Proof. Choose each vector vi randomly where each coordinate of vi is picked independently and uniformly
from {+1√

d
, −1√

d
}. The factor 1/

√
d is chosen to make sure that each vi has norm exactly 1. This implies that

〈vi, vj〉 = cos(∠vi, vj). So, to show that ∠vi, vj ≈ 90◦, it is enough to show that 〈vi, vj〉 is very close to 0.
We show that with high probability the angle between any two vectors sampled this way is close to 90◦, and
then we use a union bound to finish the proof.

Fix a unit vector u, and let v be a random vector chosen as described in the previous paragraph. We can
easily calculate the expected value of their inner product. We have

E [〈v, u〉] = E

[∑
i

vi · ui

]
=

d∑
i=1

ui · E [vi] = 0.

Now, for each i, let Xi = vi · ui. Given that E [
∑
iXi] = 0, we use Hoeffding inequality to find a bound for

the inner product. Observe that for each i, −1
d ≤ Xi ≤ +1

d . So, by (7.1)

P
[∣∣∣∑ vi · ui

∣∣∣ > ε
]

= P
[∣∣∣∑Xi

∣∣∣ > ε
]
≤ exp

(
−2ε2

d(1/d− (−1/d))2

)
= e−dε

2/2.
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Figure 7.1: Illustration of why sampling coordinates uniformly random doesn’t give a rotationally uniform
vector.

We showed a probability bound for the inner product of two vectors, now we use union bound to prove a
bound for the inner product of all pairs of vector.

P
[
∀i, j : |〈vi, vj〉| ≤ ε

]
= 1− P

[
∀i, j|〈vi, vj〉| > ε

]
≥ 1−

∑
i<j

P
[
|〈vi, vj〉| > ε

]
≥ 1−

(
m

2

)
e
−ε2d

2 ≥ 1−m2e
−ε2d

2

If we set ε =
√

5 lgm
d , we have:

P

[
∀i, j : |〈vi, vj〉| ≤

√
5 lgm

d

]
≥ 1− 1√

m

Now if we set m = e
d

10000 , then ε =

√
5 d

10000

d ≤ 1
40 . This means that for every pair vi, vj of e

d
10000 vectors we

have − 1
40 ≤ cos(∠vi, vj) ≤ 1

40 , so 85◦ ≤ ∠vi, vj ≤ 95◦.

7.3 Sample Vectors with Uniform Direction

Let’s say we want to sample a d dimensional vector v with a uniformly random direction. In other words,
we would like to choose a uniformly random point on a d-dimensional ball. One simple way is to randomly
sample the coordinates of a vector v = 〈v1, · · · , vd〉 from range [−1, 1]. However, with this approach of
sampling, the direction of the vectors would not be uniformly distributed. For example in R2, if we sample a
vector by sampling each coordinate uniformly and independently, we’re actually choosing a uniform random
point from H2 (square of with side of 2 around the origin). The point that gets picked is either inside B2 (the
red area of Figure 7.1) or outside of it. If the point is inside the ball, then the angle is uniformly distributed.
If it’s outside the ball (the blue area of Figure 7.1), it’s angle is more biased towards 45◦, 135◦, 225◦, and
315◦.

We say a vector g ∈ Rd is a Guassian vector, if each coordinate of g is a uniformly and independently chosen
N (0, 1) random variable. To choose a random direction in Rd it is enough to choose a Guassian vector.
That vector points to a random direction. Similarly, to choose a uniformly random point on the surface of
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the d dimensional ball we can use g/ ‖g‖. To justify this claim, recall that the density function of N (0, 1) is
1√
2π
e−x

2/2. Since coordinates of g are chosen independently, the density function of g is

1

(2π)d/2
e−

g2
1+···+g2

d
2 =

1

(2π)d/2
e−‖g‖

2
2/2,

i.e., it only depends on the length of g and it is independent of the direction that g points to.

Next, we show that a Gaussian vector g is rotationally invariant which implies the aforementioned properties.

First, let us state a nice fact about Gaussians.

Fact 7.5. Given two Gaussian random variables g1 ∼ N (µ1, σ
2
1) and g2 ∼ N (µ2, σ

2
2), any linear combination

of them, ag1+bg2, has the same distribution as a Gaussian random variable with mean aµ1+bµ2 and variance
a2σ2

1 + b2σ2
2.

Knowing the fact above, we can make the following claim.

Claim 7.6. Given a d dimensional unit vector ‖v‖ = 1, and a gaussian vector g = 〈g1, · · · , gd〉 whose
coordinates are drawn iid from N (0, 1), the inner product of v and g is a standard normal random variable,
i.e. 〈v, g〉 ∼ N (0, 1).

Note that the claim is that the distribution of 〈v, g〉 doesn’t depend on the direction of v. This means that
the Gaussian vector g is equally directed towards any direction, meaning that it’s rotationally uniform.

To prove the claim, we use Fact 7.5. In particular, we can write

〈v, g〉 =
∑
i

vi · gi
D
= N (0, v2

1 + · · ·+ v2
d) = N (0, 1).

where we used that ‖v‖ = 1.

7.4 Rotationally Invariant Distributions

In this part we give a short introduction on Rotationally invariant distributions. First, we start by defining
a rotation matrix. In 2-dimensions, a rotation matrix is matrix that rotates all of the points by an angle θ
about the origin. We can display such a matrix as follows:[

cos θ − sin θ
sin θ cos θ

]
More generally, a rotation matrix is defined as follows:

Definition 7.7 (Rotation Matrix). A matrix R ∈ Rn×n is a rotation matrix if for all u ∈ Rn, ‖Ru‖2 = ‖u‖.

There is an equivalent way to define a rotation matrix. An n× n matrix

R =
[
r1

∣∣∣ r2
∣∣∣ . . .

∣∣∣ rn
]

is a rotation matrix if it satisfies the following two properties

i) For all i,
∥∥ri∥∥ = 1,
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ii) For all 1 ≤ i < j ≤ n, 〈ri, rj〉 = 0.

In other words, r1, . . . , rn form an orthonormal set of vectors in Rn. Observe that if r1, . . . , rn are orthonor-
mal, then

RTR = I

The reason being that the i, j-th entry of RTR is simply 〈ri, rj〉.

Next, we show that if r1, . . . , rn are orthonormal, then R is a rotation matrix. Fix an arbitrary u ∈ Rn. We
need to show ‖Ru‖ = ‖u‖ or equivalently, ‖Ru‖2 = ‖u‖2. But,

‖Ru‖2 = (Ru)ᵀRu = uᵀRᵀRu = uᵀIu = uᵀu = ‖u‖2 .

Definition 7.8 (Rotationally Invariant Distributions). We say a probability distribution D over Rn is
rotationally invariant if for all x ∈ Rn, and all rotation matrices R,

P [x] = P [Rx] .

Next, we show that the distribution of n independent standard normal random variable x1, . . . , xn is rota-
tionally invariant. First, we need to recall that density function of the multivariate Gaussian distribution.

We say X = (X1, . . . , Xn) form a multivariate normal random variable when they have following density
function:

det(2πΣ)−1/2e−(X−µ)ᵀΣ−1(X−µ)/2

where for all i, µi = E [Xi] and Σ is the covariance matrix of X1, . . . , Xn. In particular, for all i, j,

Σi,j = Cov(Xi, Xj) = E [Xi − E [Xi]]E [Xj − E [Xj ]] = E [XiXj ]− E [Xi]E [Xj ] .

As a special case, if X1, . . . , Xn are standard normals chosen independently then Σ is just the identity
matrix. This is because by independence E [XiXj ] = E [Xi]E [Xj ] so the off-diagonal entries of Σ are 0, and
E
[
X2
i

]
= 1 because Xi is standard normal, so all diagonal entries are 1.

Next, we show that if x1, . . . , xn are independent standard normals and R is a rotation matrix, then P [x] =
P [Rx]. Observe that µ = 0 and Σ = I. So,

P [Rx] ∝ e−x
ᵀRᵀΣ−1Rx/2 = e−x

ᵀRᵀIRx/2 = e−x
ᵀRᵀRx/2 = e−x

ᵀIx/2 ∝ P [x] ,

where we have not written down the normalizing constant det 2πΣ−1/2 to simplify the notation. This proves
that by choosing n independent standard normals we obtain a rotationally invariant distribution.

7.5 Concentration of Measure for Gaussians

Let X ∼ N (0, 1). Observe that E
[
X2
]

= 1. Concentration of measure for gaussians states that as we get
more samples X1, . . . , Xk ∼ N (0, 1), the mean of the square of the samples 1

k

∑
iX

2
i gets exponentially closer

to 1.

Theorem 7.9. For k standard normal random variables X1, · · · , Xk ∼ N (0, 1), and 0 < ε < 1, we have

P

[∣∣∣∣∣1k∑
i

X2
i − 1

∣∣∣∣∣ ≥ ε
]
≤ 2e

−kε2
8
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Figure 7.2: Most of the area of a d dimensional ball is on the belt around its equator.

We can use this bound to show that most of the area of a d dimensional ball is on the belt around its equator.

Theorem 7.10. If we slice the ball Bd with the hyperplane xe1 =
√

c
d , where e1 is as defined in (7.2), the

volume of the ball above (or below) the hyperplane is less than e−Ω(c).

Proof. To prove the claim it is enough to show that a uniformly random point g/ ‖g‖ on the surface of unit
d-dimensional ball has a small inner product with e1 vector. To be precise we show that

P
[
|〈 g
‖g‖

, e1〉| ≥
√
c

d

]
≤ e−Ω(c).

First, observe that

P
[
|〈 g
‖g‖

, e1〉| ≥
√
c

d

]
= P

[
〈 g
‖g‖

, e1〉2 ≥ c

d

]
= P

[
〈g, e1〉2 ≥ ‖g‖2 c

d

]
= P

[
g2

1 ≥ ‖g‖
2 c

d

]
We use the concentration of measure of independent Gaussians, to show that ‖g‖2 is highly concentrated
around d.

P
[
| ‖g‖2 − d| > εd

]
= P

[∣∣∣∣∣∑
i

g2
i − d

∣∣∣∣∣ > εd

]
= P

[∣∣∣∣1d∑ g2
i − 1

∣∣∣∣ > ε

]
≤ e

−dε2
8 ,

where in the last inequality we used Theorem 7.9. So, for ε = 1
2 we have:

P
[
‖g‖2 < d

2

]
≤ e−Ω(d)

On the other hand, g1 is just a N (0, 1) random variable, so

P
[
g2

1 ≥ c/2
]

= P
[
|gi| ≥

√
c/2
]
≤ e−Ω(c),

where the latter simply follows from the Gaussian probability density function.

Now, we can finish the proof by a union bound argument. If g2
1 > c

d ‖g‖
2
, then we must either have

‖g‖2 < d/2 or g2
1 > c/2 (or both). So, by union bound,

P
[
g2

1 ≥ ‖g‖
2 c

d

]
≤ P

[
g2

1 ≥ c/2
]

+ P
[
‖g‖2 ≥ d/2

]
≤ e−Ω(c) + e−Ω(d) ≤ 2e−Ω(c).
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7.6 Dimension Reduction

Now we describe a central result of high dimensional geometry. Given n points x1, x2, · · · , xn ∈ Rd. We
would like to find n points y1, y2, · · · , yn ∈ Rk, where k � d such that for all i, j

(1− ε)
∥∥xi − xj∥∥ ≤ ∥∥yi − yj∥∥ ≤ (1 + ε)

∥∥xi − xj∥∥ . (7.3)

Ideally, we would like to have ε very close to zero and k � d.

Theorem 7.11 (Johnson-Lindenstrauss). . Given n points x1, x2, · · · , xn ∈ Rd, there exists a linear mapping
Gxi = yi ∈ Rk such that each i, j satisfy (7.3) and k = O( lgn

ε2 ).

The remarkable fact about this theorem is that k does not depend on d; it only depends on the number of
points and ε.

One simple idea to prove the above theorem is to let the rows of G be k standard basis vectors chosen
uniformly at random. However, this doesn’t work very well in the worst case. A bad example is where all
xi’s are zero on all coordinates except the last k. Such a mapping G with high probability distorts most pair
of points.

The right mapping is to let G be a k × n matrix whose element are drawn iid from N (0, 1
k ), i.e., each row

of G is a d-dimensional Gaussian vector scaled by 1/
√
k,

G =


√

1/k g1√
1/k g2

. . .√
1/k gk.


Firstly, observe that for any vector v ∈ Rd, E

[
‖Gv‖2

]
= 1. This is because

E
[
‖Gv‖2

]
= E

k∑
i=1

1

k
〈gi, v〉2 =

1

k

k∑
i=1

E
[
〈gi, v〉2

]
= 1,

where the last equality uses the rotation invariance property of Gaussians. In particular, let X ∼ N (0, 1).

Then, since 〈gi, v〉 D
= N (0, 1), we can write

E
[
〈gi, v〉2

]
= EX2 = Var(X)− E [X]

2
= Var(X) = 1.

Claim 7.12. For any unit vector v, and 0 < ε < 1,

P
[∣∣∣‖Gv‖2 − 1

∣∣∣ > ε
]
≤ e−ε

2k/8

Proof. By the rotation invariance property, Gv has the same distribution as Ge1. We can write

Ge1 =


g1

1/
√
k

g2
1/
√
k

...

gk1/
√
k

 .
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So, ∥∥Ge1
∥∥2

=

k∑
i=1

1

k
(gi1)2.

The claim follows by Theorem 7.9.

Now, we are ready to finish the proof of Theorem 7.11. Fix a pair 1 ≤ i < j ≤ n. In the following claim
we show that

∥∥yi − yj∥∥ ≈ ∥∥xi − xj∥∥ with high probability. Then, Theorem 7.11 follows by a union bound
argument.

Claim 7.13. For any 1 ≤ i < j ≤ n, and 0 < ε < 1,

P
[
(1− ε)

∥∥xi − xj∥∥ ≤ ∥∥yi − yj∥∥ ≤ (1 + ε)
∥∥xi − xj∥∥] ≥ 1− e−ε

2k/8.

Proof. The claim essentially follows from Claim 7.12 after doing some algebraic manipulations. The main
nontrivial step is to use the linearity of the projection operator, i.e., yi − yj = Gxi −Gxj = G(xi − xj).

P
[
(1− ε)

∥∥xi − xj∥∥ ≤ ∥∥yi − yj∥∥ ≤ (1 + ε)
∥∥xi − xj∥∥] = P

[
(1− ε)2

∥∥xi − xj∥∥2 ≤
∥∥yi − yj∥∥2 ≤ (1 + ε)2

∥∥xi − xj∥∥2
]

≥ P

[
1− ε ≤

∥∥yi − yj∥∥2

‖xi − xj‖2
≤ 1 + ε

]

= P

[∣∣∣∣∣
∥∥Gxi −Gxj∥∥2

‖xi − xj‖2
− 1

∣∣∣∣∣ ≤ ε
]

= P

[∣∣∣∣∣
∥∥∥∥G xi − xj

‖xi − xj‖

∥∥∥∥2

− 1

∣∣∣∣∣ ≤ ε
]
≥ 1− e−kε

2/8,

where the last inequality follows by Claim 7.12.

To prove Theorem 7.9 it is enough to let k = 24 log n/ε2. Then, we get

P
[
∀i, j : (1− ε)

∥∥xi − xj∥∥ ≤ ∥∥yi − yj∥∥ ≤ (1 + ε)
∥∥xi − xj∥∥] ≥ 1− n2e−ε

2k/8 ≥ 1− 1/n.

This completes the proof of Theorem 7.11.

See the course website for several recent works related to dimension reduction and Johnson-Lindenstrauss
theorem.
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