
CSE 521: Design and Analysis of Algorithms I Fall 2022

Lecture 12: Approximation Algorithms for the Max Cut Problem
Lecturer: Shayan Oveis Gharan 11/08/22

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Low Rank Approximation in Optimization

In this lecture we are going to study Low Rank Approximation applications in optimization. In particular,
we will discuss a spectral algorithm for the maximum cut problem. Given a graph G = (V,E), find S ⊆ V
such that |E(S, S̄)| is maximized. As we discussed in the last lecture, given adjacency matrix A, Max Cut
Problem can be formed as:

max
x∈{0,1}n

xTA(1− x) (12.1)

Max Cut Problem is among Karp’s 21 NP-complete problems. It is also shown the problem hard to approx-
imate with a factor better than 16/17 unless P = NP . We will prove the following theorem.

Theorem 12.1. Let as k > 1 be an integer, for any matrix A ∈ {0, 1}n×n, we can approximate (12.1) with

an additive n2
√
k
error, in O(kkpoly(n)) time.

Note that if G is a dense graph the above theorem gives a (1−ϵ) multiplicative approximation for a sufficiently
large k.

Corollary 12.2. Suppose for every vertex i of G, d(i) ≥ c · n for a constant c > 0 and let ϵ > 0. Then, for
k ≤ O(1

c2ϵ2), there is an algorithm that returns a cut of size at most (1 − ϵ) fraction of the optimum. The
algorithm runs in time O(kk poly(n)).

Proof. First of all, in HW2 we saw that the optimum solution of Max Cut for any graph G is at least |E|/2
(and at most |E|).

Since every vertex has degree at least cn,

|E| ≥ n(cn)/2 = cn2/2.

Now, choose k = O(1
c2ϵ2) such that 1/

√
k = ϵc/2. Then, by Theorem 12.1 there is an algorithm that finds a

cut of size at least

OPT − n2/
√
k ≥ OPT − ϵcn2/2 ≥ (1− ϵ)OPT

where in the last inequality we used that OPT ≥ cn2/2.

To prove Theorem 12.1, first we approximate A with rank k matrix, Ak. Secondly we solve the optimization
problem (12.1) with respect to Ak. It turns out that, since Ak is a low rank matrix, we just need to solve
a k-dimensional problem, as opposed to the original n dimensional problem of choosing x ∈ {0, 1}n. In the
second step, we will show to approximately solve this problem using a technique called ϵ-net.

12-1

12-2 Lecture 12: Approximation Algorithms for the Max Cut Problem

12.1.1 Step 1

Given a matrix A ∈ {0, 1}n, firstly we prove the following claim. Note that here for simplicity we assume A
is a symmetric matrix; but the same proof works for non-symmetric matrices.

Claim 12.3. For an integer k ≥ 1, let Ak be the best rank k approximate of A with respect to the Frobenius
norm. Then, for any vector x ∈ {0, 1}n,

|xTA(1− x)− xTAk(1− x)| ≤ O(
n2

√
k
).

Proof. As

A =
∑
i

λiviv
T
i ,

with eigenvalues λ1 ≥ λ2, ... and corresponding orthonormal eigenvectors v1, . . . , vn. As we discussed in the
previous lecture,

Ak =

k∑
i=1

λiviv
T
i .

Now, we can write,

|xTA(1− x)− xTAk(1− x)| = |⟨x, (A−Ak(1− x)⟩|
≤ ∥x∥ · ∥(A−Ak)(1− x)∥2
≤ ∥x∥ · ∥A−Ak∥2.∥1− x∥
≤

√
n(λk+1)

√
n = nλk+1

The first inequality follows by Cauchy-Schwarz inequality(|⟨a, b⟩| ≤ ∥a∥ · ∥b∥ for any two vectors a, b). The

third inequality follows from the definition of matrix operator norm. ∥A−Ak∥2 = maxy
∥(A−Ak)y∥

∥y∥ . The last

inequality follows from the definition of x,Ak. In particular, for any binary vector x,

∥x∥2 =

n∑
i=1

x2
i =

n∑
i=1

xi ≤ n.

Also by definition of Ak,

A−Ak =

n∑
i=k+1

λiviv
T
i ,

But, as we proved in lecture 8, the operator norm is equal to the largest singular value (or largest eigenvalue
for symmetric matrices), so ∥A−Ak∥2 = λk+1.

Now, to finish the proof we need to upper bound λk+1. Since λ1 ≥ ... ≥ λn,

λ2
k+1 ≤

λ2
1 + ...+ λ2

k+1

k + 1
≤
∑n

i=1 λ
2
i

k + 1
=

||A||2F
k + 1

=
n2

k + 1

In the second to last equality we use the fact that A2
F =

∑
i λ

2
i . And, in the last equality we use that

A ∈ {0, 1}n×n matrix. So we have λk+1 ≤ n√
k
, which proved the claim.

Note that the above upper bound on λk+1 is very loose. In the worst case, if all of the first k+1 eigenvalues
are equal and the rest are 0, then the bound is tight; there are graphs of this from but in such a case one
should choose k at the point where there is a large gap between eigenvalues. This idea can be very useful
in practice. Because many of the matrices that we work with in practice have large gaps between their
eigenvalues or singular values. So, we can approximate them up to a very small error using a low rank
approximation.

Lecture 12: Approximation Algorithms for the Max Cut Problem 12-3

12.1.2 Step 2

In the second step we approximately solve (12.1) for a low rank matrix Ak. Recall that Ak =
∑k

i=1 λiviv
T
i .

So, for a vector x,

xTAk(1− x) = xT

(
k∑

i=1

λiviv
T
i

)
(1− x) =

k∑
i=1

λi⟨vi, x⟩⟨vi, 1− x⟩. (12.2)

Recall that x is supposed to be an indicator vector of a set. For a set S, let 1
¯
S is defines as follows:

1S
i =

{
1 if i ∈ S

0 otherwise.

Define vi(S) =
∑

j∈S vi,j = ⟨vi,1S⟩. So, we can calculate 1
¯
ST

Ak(1−1
¯
S) using v1(S), . . . , vk(S), v1(S), . . . , vk(S).

Note that this is an inherently 2k dimensional problem, so one should expect to solve it faster, i.e., in time
exponential in k. This may not be clear at this point because we associate each of the 2n possible solutions
to the max cut problem with one point in a k dimensional space. So, in the worst case, one needs to brute
force over all such vectors to find the best cut.

We show that it is enough to have an approximate value of vi(S) for every coordinate to aprpoximately
maximize (12.1) for Ak. It turns out that if we have vi(S) only with some small error ϵ still that is enough

to approximate 1ST
Ak(1 − 1S) within n2/

√
k error. In particular, supposed |ṽi(S) − vi(S)| ≤ ϵ for all i.

Then, ∣∣∣∣∣
k∑

i=1

λivi(S)vi(S)−
k∑

i=1

λiṽi(S)ṽi(S)

∣∣∣∣∣ ≤

∣∣∣∣∣
k∑

i=1

λivi(S)vi(S̄)−
k∑

i=1

(vi(S)± ϵ)(vi(S̄)± ϵ))

∣∣∣∣∣
≤

k∑
i=1

λi · ϵ · max
{1≤j≤k

{vj(S), vj(S̄)}

≤ n
√
k

√
n

k

√
n

= O(
n2

√
k
)

Let us discus the last inequality. We choose ϵ = O(
√
n
k). For every set S,

vj(S) = ⟨vj , S⟩ ≤ ∥vj∥ · ∥1S∥ ≤
√
n.

Also, by Cauchy-Schwarz inequality,

k∑
i

λi ≤
√
k ·

√√√√ k∑
i

λ2
i ≤

√
k · ∥A∥F =

√
k|E| ≤ n

√
k.

Now, we define ṽi(S) by rounding vi(S) to a multiple of ϵ. This way, we essentially discretize the vector
vi(S) and vi(S). Note that since −

√
n ≤ vi(S) ≤

√
n,

ṽi(S) ∈ {−kϵ,−(k − 1)ϵ, ...+ kϵ}.

So, now, our search space only has (2k)2k discrete points. Note that the discretization argument essentially
reduces our 2n possible solutions to max cut to (2k)2k many solutions. So, all we need to do is to brute force

12-4 Lecture 12: Approximation Algorithms for the Max Cut Problem

over all possible ṽ vectors, i.e., all (2k)2k possibilities. For each of them we can calculate
∑k

i=1 λiṽi(S)ṽi(S)
and choose the best point that we find. The algorithm runs in time O((2k)2k poly(n)).

The above idea is called an ϵ-net. Whenever we have an optimization problem in a k dimensional space even
if there are 2n possible solutions to our problem we can divide the space by a grid with cell size ϵ. Then,
for each cell we choose a representative. We brute force over all of the cells and choose the representative
of highest value among all sets as the solution to our optimization problem. Note that there is a tradeoff in
choosing ϵ. On one hand, we want to choose ϵ as big as possible to decrease the size of the search space of
our brute force algorithm and on the other hand we want to choose it as small as possible to make the error
incurred by choosing just one representative per cell as small as possible. In practice one should choose ϵ
based on the available computational power.

Finally, there is one technical point that we did not mention. For any approximate vector x ∈ {−kϵ,−(k −
1)ϵ, ...,+kϵ}2k, we need to consider x in our brute force algorithm if there is a set S where the approximate

(ṽ1(S), . . . , ṽk(S), ṽ1(S), . . . , ṽk(S)) = x.

To find such a set we can use tools from convex optimization, and in particular linear programming. We will
discuss this in future lecture. But, the upshot is that we can find such a set S for a given vector x efficiently.

	Low Rank Approximation in Optimization
	Step 1
	Step 2

