
CSE 521: Design and Analysis of Algorithms Fall 2021

Problem Set 4
Deadline: Dec 9th in gradescope

1) Let G be a connected (unweighted undirected) graph with n vertices and conductance φ(G). In this
exercise we see how to approximate the diameter of G, diam(G) := maxu,v d(u, v) where d(u, v) is the
shortest path from u to v, using eigenvalues of the normalized Laplacian matrix.

• Show that
diam(G) ≤ O(log n/φ(G))

Hint: For a set S ⊆ V let N(S) = {v : ∃u ∈ S, (u, v) ∈ E} be the set of neighbors of S. Show that

vol(N(S) ∪ S) ≥ (1 + φ(S)) vol(S)

• Prove that diam(G) ≤ O(log n/λ2(L̃)) where L̃ is the normalized Laplacian matrix and λ2(L̃) is its
second smallest eigenvalue.

2) Given a (undirected connected) graph G, with Laplacian matrix, the effective resistance between a pair
of vertices i, j of G is defined as Reff(i, j) = bTi,jL

†bi,j where bi,j = 1i − 1j is the vector that is +1 at i-th
coordinate, −1 at j-th coordinate and zero everywhere else. Note that since the Laplacian matrix has a
zero eigenvalue its inverse is not well-defined; that is why we define the effective resistance with respect
to a pseudo-inverse of the Laplacian. Namely if L =
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So, in particular, the effective resistance of an edge e = (i, j) is Reff(e) := Reff(i, j). We observed that
the effective resistance can be exploited to generate a spectral sparsifier of a graph. In this exercise we
prove that effective resistance defines a metric over vertices of G. This fact has numerous applications in
algorithmic use of effective resistance.

(a) Prove that the Reff(i, j) ≥ 0 and that Reff(i, j) = Reff(j, i) for all i, j.

(b) Suppose that bi,j = Lp where L is the Laplacian and p ∈ Rn. Show for any k ∕= i, j, pi ≥ pk ≥ pj ,
i.e., pi has largest value in p and pj has smallest value in p.

(c) Use the previous part to show that for any three distinct vertices i, j, k

bTi,jL
†bj,k ≤ 0.

(d) Use the previous part to prove that effective resistance defines a metric: namely for any three distinct
vertices i, j, k,

Reff(i, j) + Reff(j, k) ≥ Reff(i, k).

3) In this problem we use expander graphs to design a much faster algorithm for problem 1 of HW2. We
will use the following theorem:

Theorem 4.1. Let G be a d-regular expander graph where λ is the second smallest eigenvalue of the
normalized Laplacian matrix. Consider the following random walk: Let X1 be a uniformly random vertex
of G, each time given Xi, Xi+1 will be a uniformly random neighbor of Xi, i.e., starting from X1 we run
a simple random on G. Suppose we run this walk for t time steps. Then, for any set S ⊆ V ,

P

1

t
|{X1, . . . , Xt} ∩ S|− |S|/n

 > 


≤ 2 exp(−λt2).
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Say A is a randomized algorithm that uses m random bits and will output the optimum of a minimization
problem with probability at least 1/2. Let G be a d-regular expander graph (for a constant d) with n = 2m

many vertices and λ > 1/101.

(a) Prove that to run a walk of length t on G, as described above, we only need m + O(t log d) many
random bits (assuming d is an absolute constant).

(b) Prove that for any integer r < m we can improve the success probability of A to 1−1/2r by running
A only O(r) many times using only O(m) many bits. In this part treat d as a constant and ignore
any factor of d in the O(.) notation.

So, we need significantly less random bits compared to the simplest approach which uses O(rm) many
random bits.

4) Implement the spectral sparsification algorithm that we discussed in class. Print your pseudo-code in the
pdf-file.

5) You are given data containing grades in different courses for 5 students; say Gi,j is the grade of student
i in course j. (Of course, Gi,j is not defined for all i, j since each student has only taken a few courses.)
We are trying to “explain” the grades as a linear function of the student’s innate aptitude, the easiness
of the course and some error term.

Gi,j = aptitudei + easinessj + i,j ,

where i,j is an error term of the linear model. We want to find the best model that minimizes the sum
of the |i,j |’s.

a) Write a linear program to find aptitudei and easinessj for all i, j minimizing


i,j |i,j |.
b) Use any standard package for linear programming (Matlab/CVX, Freemat, Sci-Python, Excel etc.; we

recommend CVX on matlab) to fit the best model to this data. Include a printout of your code, the
objective value of the optimum,


i,j |i,j |, and the calculated easiness values of all the courses and

the aptitudes of all the students.

MAT CHE ANT REL POL ECO COS
Alex C- B B+ A C+
Billy B- A- C A+ D+ B
Chris B+ B+ C C B+
David A+ B- A- A-
Elise B- D+ A- D D

Assume A = 4, B = 3 and so on. Also, let B+ = 3.33 and A− = 3.66.

6) Extra Credit. In this problem we see applications of expander graphs in coding theory. Error correcting
codes are used in all digital transmission and data storage schemes. Suppose we want to transfer m bits
over a noisy channel. The noise may flip some of the bits; so 0101 may become 1101. Since the transmitter
wants that the receiver correctly receives the message, he needs to send n > m bits encoded such that
the receiver can recover the message even in the presence of noise. For example, a naive way is to send
every bit 3 times; so, 0101 becomes 000111000111. If only 1 bit were flipped in the transmission receiver
can recover the message but even if 2 bits are flipped, e.g., 110111000111 the recover is impossible. This
is a very inefficient coding scheme.

1Here is a simple construction of a 3-regular expander graph: Take p be a prime, let V = {0, 1, . . . , p − 1}. Each vertex i
is connected to i − 1 mod p, i + 1 mod p, and to its multiplicative inverse, a−1, mod p. It is known that the second smallest
eigenvalue of normalized Laplacian such a graph is at least  for some explicit 
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An error correcting code is a mapping C : {0, 1}m → {0, 1}n. Every string in the image of C is called a
codeword. We say a coding scheme is linear, if there is a matrix M ∈ {0, 1}(n−m)×n such that for any
y ∈ {0, 1}n, y is a codeword if and only if

My = 0.

Note that we are doing addition and multiplication in the field F2.

a) Suppose C is a linear code. Construct a matrix A ∈ {0, 1}n×m such that for any x ∈ {0, 1}m, Ax is a
code word and that for any distinct x, y ∈ {0, 1}m, Ax ∕= Ay.

The rate of a code C is defined as r = m/n. Codes of higher rate are more efficient; here we will be
interested in designing codes with r being an absolute constant bounded away from 0. The Hamming
distance between two codewords c1, c2 is the number of bits that they differ, c1 − c21. The minimum
distance of a code is minc1,c2 c1 − c21.

b) Show that the minimum distance of a linear code is the minimum Hamming weight of its codewords,
i.e., minc c1.

Note that if C has distance d, then it is possible to decode a message if less than d/2 of the bits are
flipped. The minimum relative distance of C is δ = 1

n min c1 − c21. So, ideally, we would like to have
codes with constant minimum relative distance; in other words, we would like to say even if a constant
fraction of the bits are flipped still one can recover the original message.

Next, we describe an error correcting code scheme based on bipartite expander graphs with constant rate
and constant minimum relative distance. A (nL, nR, D, γ,α) expander is a bipartite graph G(L ∪ R,E)
such that |L| = nL, |R| = nR and every vertex of L has degree D such that for any set S ⊆ L of size
|S| ≤ γnL,

N(S) ≥ α|S|.

In the above, N(S) ⊆ R is the number of neighbors of vertices of S. One can generate the above family
of bipartite expanders using ideas similar to Problem 1. We use the following theorem without proving
it.

Theorem 4.2. For any  > 0 and m ≤ n there exists γ > 0 and D ≥ 1 such that a (n,m,D, γ, D(1− ))-
expander exists. Additionally, D = Θ(log(nL/nR)/) and γnL = Θ(nR/D).

Now, we describe how to construct the matrix M . We start with a (nL, nR, D, γ, D(1 − )) expander
for nL = n, nR = n − m. For our calculations it is enough to let n = 2m. We name the vertices of L,
{1, 2, . . . , n}; so each bit of a codeword corresponds to a vertex in L. We let M ∈ {0, 1}(n−m)×n be the
Tutte matrix corresponding to this graph, i.e., Mi,j = 1 if and only if the i-th vertex in R is connected to
the j-th vertex in L. Observe that by construction this code has rate 1/2. Next, we see that δ is bounded
away from 0.

c) For a set S ⊆ L, let U(S) be the set of unique neighbors of S, i.e., each vertex in U(S) is connected
to exactly one vertex of S. Show that for any S ⊆ L such that |S| ≤ γn,

|U(S)| ≥ D(1− 2)|S|.

d) Show that if  < 1/2 the minimum relative distance of C is at least γ.

The decoding algorithm is simple to describe but we will not describe it here.
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