Instructions

- You should think about each problem by yourself for at least an hour before choosing to collaborate with others.
- You are allowed to collaborate with fellow students taking the class in solving the problems (in groups of at most 2 people for each problem). But you must write your solution on your own.
- You are not allowed to search for answers or hints on the web. You are encouraged to contact the instructor or the TAs for a possible hint.
- You cannot collaborate on Extra credit problems
- Solutions typeset in LATEX are preferred.
- Feel free to use the Discussion Board or email the instructor or the TA if you have any questions or would like any clarifications about the problems.
- Please upload your solutions to Canvas. The solution to each problem must be uploaded separately.

In solving these assignments and any future assignment, feel free to use these approximations:

\[1 - x \approx e^{-x}, \quad n! \approx (n/e)^n, \quad \left(\frac{n}{k} \right)^k \leq \left(\frac{en}{k} \right)^k \]

Also, recall Cauchy-Schwartz Inequality: For real numbers \(a_1, \ldots, a_n, b_1, \ldots, b_n \) we have

\[\sum_{i=1}^{n} a_i b_i \leq \sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2} \]

1) Let \(Y \) be a non-negative integer valued random variable. Prove the following inequalities:

\[\frac{\mathbb{E}[Y]^2}{\mathbb{E}[Y^2]} \leq \mathbb{P}[Y \neq 0] \leq \mathbb{E}[Y] \]

2) a) Show how to construct a biased coin, which is 1 with probability \(p \) and 0 otherwise, using \(O(1) \) random bits in expectation. [Hint: First show how to construct a biased coin using an arbitrary number of random bits. Then show that the expected number of bits examined is small.]

b) Given \(p_1, \ldots, p_n \) where \(\sum_i p_i = 1 \), show how to sample from \(\{1, \ldots, n\} \) where \(i \) must be chosen with probability \(p_i \), using \(O(\log n) \) random bits in expectation.

c) Show that the “in expectation” caveat is necessary: for example, one cannot sample uniformly over \(\{1, 2, 3\} \) using \(O(1) \) bits in the worst case.

3) Let \(S = \{1, \ldots, n\} \) and \(T = \{n+1, \ldots, 2n\} \). Choose a random set \(R \) where each number \(1, \ldots, 2n \) is in \(R \), independently, with probability \(p \).

a) Show that for \(p = 1/n \) with a constant probability (independent of \(n \)), \(R \cap S = \emptyset \) and \(R \cap T \neq \emptyset \).
b) Now assume that we choose elements of \(R \) only with a pairwise independent hash function, while still every element is chosen with probability \(p \). Choose a specific value of \(p \) (as a function of \(n \)) such that still with a constant probability (independent of \(n \)), \(R \cap S = \emptyset, R \cap T \neq \emptyset \).

4) Consider an \(n \)-dimension hypercube as a network of parallel processors. The network has \(N = 2^n \) processors where each processor is represented by an \(n \) bit string \(x_0x_1 \ldots x_{n-1} \) and two processors are connected by a wire if their bit representations differ in exactly one bit. We consider the permutation routing problem on such a network. Each processor \(x \) initially contains one packet \(p_x \) destined for some processor \(d(x) \) in the network such that each processor is the destination of exactly one packet, i.e., \(d(.) \) is a permutation. All communication between processors proceeds in a sequence of synchronous steps. At each time step each wire can transmit a single packet in each direction. So, in each step, a processor can send at most one packet to each of its neighbors.

We want to design an algorithm to specify a route for each packet, i.e., a sequence of edges from the source to the destination. Note that a packet may have to wait for several steps at an intermediate node \(y \) because multiple packets may want to leave \(y \) through the same wire. The goal is to design an algorithm to route all packets in a small number of steps.

(a) Consider the following simple strategy called `bit-fixing`. To send a packet \(p_x \) from node \(x \) to the node \(d(x) \), scan the bits of \(d(x) \) from left to right, and compare them with the address of the current location of \(p_x \), send \(p_x \) out of the current node along the edge corresponding to the left-most bit in which the current position and \(d(x) \) differ. For example, in going from 1011 to 0000 in a 4-dimensional hypercube, the packet would go through the pass 1011 \(\rightarrow \) 0011 \(\rightarrow \) 0001 \(\rightarrow \) 0000. Construct a permutation \(d(.) \) and prove that for such a permutation the bit-fixing strategy takes (at least) \(\Omega(\sqrt{N}/n) \) steps.

Hint: One way to prove such a lower bound is to find a node that at least \(\sqrt{N} \) packets will pass through it.

Now, consider the following 2-phase simple strategy. Pick a uniformly random intermediate destination \(\sigma(x) \) for each packet \(p_x \). In the first phase use bit-fixing to send \(p_x \) to \(\sigma(x) \). In the second phase send \(p_x \) from \(\sigma(x) \) to \(d(x) \). We prove that this routing strategy takes only \(O(n^2) \) steps\(^1\).

(b) Show that for each node \(y \) the expected number of packets that pass through \(y \) in the first phase is \(O(n) \).

(c) Use the Bernstein’s inequality to show that for each node \(y \) the number of packets that pass through \(y \) in the first phase is \(O(n) \) with probability at least \(1 - 1/N^2 \).

Theorem 1.1 (Bernstein’s inequality). Let \(X_1, \ldots, X_n \) be independent Bernoulli random variables. Then

\[
\mathbb{P} \left[\sum_{i=1}^{n} X_i - \mathbb{E} \sum_{i=1}^{n} X_i > \epsilon \right] \leq \exp \left(\frac{-\frac{1}{2} \epsilon^2}{\sum \operatorname{Var}(X_i) + \epsilon/3} \right).
\]

(d) Prove that the 2-phase strategy takes only \(O(n^2) \) steps w.h.p..

5) In this problem you are supposed to implement min-cut Algorithm-1 and output the probability that it returns a min-cut of the given graph (note that in class we proved a lower bound of \(1/(\binom{n}{2}) \) but the probability can be significantly larger) within 0.01 error.

I will uploaded three input files to the course website. Each file contains the list of edge of a graph; note that the graphs may also have parallel edges. The label of each node is an integer. For example, given the following input you should output 0.50. This graph has 4 edges and nodes have labels 1, 3, 4, 6. It

\(^1\)We remark that it is also possible to prove that the 2-phase strategy takes only \(O(n) \) steps but here we prove a weaker bound.
has a unique minimum cut which is the degree cut of vertex 1 and the probability that Algorithm 1 finds this cut is 0.50.

For each input file you should output the size of the mincut together with probability that algorithm-1 returns a mincut. Please upload your code to Gradescope and its output output of your program for each input in the designated “text box”.

6) **Extra Credit:** Say we have a plane with \(n \) seats and we have a sequence of \(n \) passengers 1, 2, \ldots, \(n \) who are going to board the plane in this order and suppose passenger \(i \) is supposed to sit at seat \(i \). Say when 1 comes he chooses to sit at some arbitrary seat different from his own sit, 1. From now on, when passenger \(i \) boards, if her seat \(i \) is available she sits at \(i \), otherwise she chooses sits at a uniformly random seat that is still available. What is the probability that passenger \(n \) sits at her seat \(n \)?